lucasresck commited on
Commit
3535a9e
1 Parent(s): 78f0e71

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: mit
5
+ tags:
6
+ - bert
7
+ - classification
8
+ datasets:
9
+ - ag_news
10
+ metrics:
11
+ - accuracy
12
+ - f1
13
+ - recall
14
+ - precision
15
+ widget:
16
+ - text: "Is it soccer or football?"
17
+ example_title: "Sports"
18
+ - text: "A new version of Ubuntu was released."
19
+ example_title: "Sci/Tech"
20
+ ---
21
+
22
+ # bert-base-cased-ag-news
23
+
24
+ BERT model fine-tuned on AG News classification dataset using a linear layer on top of the [CLS] token output, with 0.945 test accuracy.
25
+
26
+ ### How to use
27
+
28
+ Here is how to use this model to classify a given text:
29
+ ```python
30
+ from transformers import AutoTokenizer, BertForSequenceClassification
31
+ tokenizer = AutoTokenizer.from_pretrained('lucasresck/bert-base-cased-ag-news')
32
+ model = BertForSequenceClassification.from_pretrained('lucasresck/bert-base-cased-ag-news')
33
+ text = "Is it soccer or football?"
34
+ encoded_input = tokenizer(text, return_tensors='pt', truncation=True, max_length=512)
35
+ output = model(**encoded_input)
36
+ ```
37
+
38
+ ### Limitations and bias
39
+
40
+ Bias were not assessed in this model, but, considering that pre-trained BERT is known to carry bias, it is also expected for this model. BERT's authors say: "This bias will also affect all fine-tuned versions of this model."
41
+
42
+ ## Evaluation results
43
+
44
+ ```
45
+ precision recall f1-score support
46
+
47
+ 0 0.9539 0.9584 0.9562 1900
48
+ 1 0.9884 0.9879 0.9882 1900
49
+ 2 0.9251 0.9095 0.9172 1900
50
+ 3 0.9127 0.9242 0.9184 1900
51
+
52
+ accuracy 0.9450 7600
53
+ macro avg 0.9450 0.9450 0.9450 7600
54
+ weighted avg 0.9450 0.9450 0.9450 7600
55
+ ```