job: custom_job config: name: sd3.5l_train_replicate process: - type: custom_sd_trainer training_folder: output device: cuda:0 trigger_word: QSO network: type: lora linear: 16 linear_alpha: 16 save: dtype: float16 save_every: 701 max_step_saves_to_keep: 1 datasets: - folder_path: input_images caption_ext: txt caption_dropout_rate: 0.05 shuffle_tokens: false cache_latents_to_disk: false cache_latents: true resolution: - 512 - 768 - 1024 train: batch_size: 1 steps: 700 gradient_accumulation_steps: 1 train_unet: true train_text_encoder: false content_or_style: balanced gradient_checkpointing: true noise_scheduler: flowmatch optimizer: adamw8bit lr: 0.0004 ema_config: use_ema: true ema_decay: 0.99 dtype: bf16 model: name_or_path: stable-diffusion-3.5-large is_v3: true quantize: true sample: sampler: flowmatch sample_every: 701 width: 1024 height: 1024 prompts: [] neg: '' seed: 42 walk_seed: true guidance_scale: 3.5 sample_steps: 28 meta: name: sd3.5l_train_replicate version: '1.0'