luciana commited on
Commit
98b15e7
1 Parent(s): 4058eb9

Model save

Browse files
Files changed (1) hide show
  1. README.md +15 -16
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.9075907590759076
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,13 +32,12 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.2434
36
- - Accuracy: 0.9076
37
 
38
  ## Model description
39
 
40
- Utilizand modelul pre-antrenat, am facut urmatorul cod utilizand google-colab: https://colab.research.google.com/drive/1OvIDRB79KsnBbxU6yPXJnV8t1M5bI3rL#scrollTo=oD74VCH_kzbn
41
-
42
 
43
  ## Intended uses & limitations
44
 
@@ -66,18 +65,18 @@ The following hyperparameters were used during training:
66
 
67
  ### Training results
68
 
69
- | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
- |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
- | 0.814 | 0.98 | 21 | 0.5313 | 0.7492 |
72
- | 0.4444 | 2.0 | 43 | 0.3200 | 0.8911 |
73
- | 0.3322 | 2.98 | 64 | 0.3148 | 0.8911 |
74
- | 0.2975 | 4.0 | 86 | 0.2836 | 0.8977 |
75
- | 0.254 | 4.88 | 105 | 0.2434 | 0.9076 |
76
 
77
 
78
  ### Framework versions
79
 
80
- - Transformers 4.38.2
81
- - Pytorch 2.2.1+cu121
82
- - Datasets 2.18.0
83
- - Tokenizers 0.15.2
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9108910891089109
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.2546
36
+ - Accuracy: 0.9109
37
 
38
  ## Model description
39
 
40
+ More information needed
 
41
 
42
  ## Intended uses & limitations
43
 
 
65
 
66
  ### Training results
67
 
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:------:|:----:|:---------------:|:--------:|
70
+ | 0.9133 | 0.9767 | 21 | 0.6896 | 0.7327 |
71
+ | 0.4397 | 2.0 | 43 | 0.3190 | 0.8779 |
72
+ | 0.3235 | 2.9767 | 64 | 0.2864 | 0.8944 |
73
+ | 0.2945 | 4.0 | 86 | 0.2758 | 0.8977 |
74
+ | 0.2804 | 4.8837 | 105 | 0.2546 | 0.9109 |
75
 
76
 
77
  ### Framework versions
78
 
79
+ - Transformers 4.41.0
80
+ - Pytorch 2.3.0+cu121
81
+ - Datasets 2.19.1
82
+ - Tokenizers 0.19.1