update model card README.md
Browse files
README.md
CHANGED
@@ -9,19 +9,19 @@ tags:
|
|
9 |
datasets:
|
10 |
- common_voice
|
11 |
model-index:
|
12 |
-
- name: uyghur
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
-
# uyghur
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UG dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
-
- Wer: 0.
|
25 |
|
26 |
## Model description
|
27 |
|
@@ -40,7 +40,7 @@ More information needed
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
-
- learning_rate:
|
44 |
- train_batch_size: 8
|
45 |
- eval_batch_size: 8
|
46 |
- seed: 42
|
@@ -49,31 +49,49 @@ The following hyperparameters were used during training:
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 2000
|
52 |
-
- num_epochs:
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step
|
58 |
-
|
59 |
-
| 3.
|
60 |
-
| 3.
|
61 |
-
| 1.
|
62 |
-
| 1.
|
63 |
-
| 1.
|
64 |
-
| 1.
|
65 |
-
| 1.
|
66 |
-
| 1.
|
67 |
-
| 1.
|
68 |
-
| 1.
|
69 |
-
| 1.
|
70 |
-
| 1.
|
71 |
-
|
|
72 |
-
|
|
73 |
-
| 0.
|
74 |
-
| 0.
|
75 |
-
| 0.
|
76 |
-
| 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
|
79 |
### Framework versions
|
|
|
9 |
datasets:
|
10 |
- common_voice
|
11 |
model-index:
|
12 |
+
- name: xls-r-uyghur-cv7
|
13 |
results: []
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
should probably proofread and complete it, then remove this comment. -->
|
18 |
|
19 |
+
# xls-r-uyghur-cv7
|
20 |
|
21 |
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the MOZILLA-FOUNDATION/COMMON_VOICE_7_0 - UG dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.1772
|
24 |
+
- Wer: 0.2589
|
25 |
|
26 |
## Model description
|
27 |
|
|
|
40 |
### Training hyperparameters
|
41 |
|
42 |
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0001
|
44 |
- train_batch_size: 8
|
45 |
- eval_batch_size: 8
|
46 |
- seed: 42
|
|
|
49 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
- lr_scheduler_type: linear
|
51 |
- lr_scheduler_warmup_steps: 2000
|
52 |
+
- num_epochs: 100.0
|
53 |
- mixed_precision_training: Native AMP
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
58 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|
|
59 |
+
| 3.3043 | 2.73 | 500 | 3.2415 | 1.0 |
|
60 |
+
| 3.0482 | 5.46 | 1000 | 2.9591 | 1.0 |
|
61 |
+
| 1.4767 | 8.2 | 1500 | 0.4779 | 0.5777 |
|
62 |
+
| 1.3152 | 10.93 | 2000 | 0.3697 | 0.4938 |
|
63 |
+
| 1.2246 | 13.66 | 2500 | 0.3084 | 0.4459 |
|
64 |
+
| 1.1781 | 16.39 | 3000 | 0.2842 | 0.4154 |
|
65 |
+
| 1.1351 | 19.13 | 3500 | 0.2615 | 0.3929 |
|
66 |
+
| 1.1052 | 21.86 | 4000 | 0.2462 | 0.3747 |
|
67 |
+
| 1.0711 | 24.59 | 4500 | 0.2366 | 0.3652 |
|
68 |
+
| 1.035 | 27.32 | 5000 | 0.2268 | 0.3557 |
|
69 |
+
| 1.0277 | 30.05 | 5500 | 0.2243 | 0.3450 |
|
70 |
+
| 1.002 | 32.79 | 6000 | 0.2204 | 0.3389 |
|
71 |
+
| 0.9837 | 35.52 | 6500 | 0.2156 | 0.3349 |
|
72 |
+
| 0.9773 | 38.25 | 7000 | 0.2127 | 0.3289 |
|
73 |
+
| 0.9807 | 40.98 | 7500 | 0.2142 | 0.3274 |
|
74 |
+
| 0.9582 | 43.72 | 8000 | 0.2004 | 0.3142 |
|
75 |
+
| 0.9548 | 46.45 | 8500 | 0.2022 | 0.3050 |
|
76 |
+
| 0.9251 | 49.18 | 9000 | 0.2019 | 0.3035 |
|
77 |
+
| 0.9103 | 51.91 | 9500 | 0.1964 | 0.3021 |
|
78 |
+
| 0.915 | 54.64 | 10000 | 0.1970 | 0.3032 |
|
79 |
+
| 0.8962 | 57.38 | 10500 | 0.2007 | 0.3046 |
|
80 |
+
| 0.8729 | 60.11 | 11000 | 0.1967 | 0.2942 |
|
81 |
+
| 0.8744 | 62.84 | 11500 | 0.1952 | 0.2885 |
|
82 |
+
| 0.874 | 65.57 | 12000 | 0.1894 | 0.2895 |
|
83 |
+
| 0.8457 | 68.31 | 12500 | 0.1895 | 0.2828 |
|
84 |
+
| 0.8519 | 71.04 | 13000 | 0.1912 | 0.2875 |
|
85 |
+
| 0.8301 | 73.77 | 13500 | 0.1878 | 0.2760 |
|
86 |
+
| 0.8226 | 76.5 | 14000 | 0.1808 | 0.2701 |
|
87 |
+
| 0.8071 | 79.23 | 14500 | 0.1849 | 0.2741 |
|
88 |
+
| 0.7999 | 81.97 | 15000 | 0.1808 | 0.2717 |
|
89 |
+
| 0.7947 | 84.7 | 15500 | 0.1821 | 0.2716 |
|
90 |
+
| 0.7783 | 87.43 | 16000 | 0.1824 | 0.2661 |
|
91 |
+
| 0.7729 | 90.16 | 16500 | 0.1773 | 0.2639 |
|
92 |
+
| 0.7759 | 92.9 | 17000 | 0.1767 | 0.2629 |
|
93 |
+
| 0.7713 | 95.63 | 17500 | 0.1780 | 0.2621 |
|
94 |
+
| 0.7628 | 98.36 | 18000 | 0.1773 | 0.2594 |
|
95 |
|
96 |
|
97 |
### Framework versions
|