File size: 1,875 Bytes
084dbc5
 
868401e
 
 
 
 
 
 
5aaa717
084dbc5
868401e
 
 
 
 
 
5aaa717
868401e
5aaa717
 
868401e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d151a08
5aaa717
8ed98a2
868401e
 
 
5aaa717
771d973
868401e
 
 
 
 
5aaa717
 
 
 
 
 
 
 
868401e
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---
license: mit
base_model: neuraly/bert-base-italian-cased-sentiment
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: sentiment_ita
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sentiment_ita

This model is a fine-tuned version of [neuraly/bert-base-italian-cased-sentiment](https://huggingface.co/neuraly/bert-base-italian-cased-sentiment) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6301
- Accuracy: 0.6903

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 48
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 14

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.5002        | 1.67  | 100  | 0.9894          | 0.6460   |
| 0.6959        | 3.33  | 200  | 0.7681          | 0.6726   |
| 0.5325        | 5.0   | 300  | 0.7615          | 0.6962   |
| 0.349         | 6.67  | 400  | 0.8867          | 0.6932   |
| 0.1798        | 8.33  | 500  | 1.1361          | 0.6873   |
| 0.0983        | 10.0  | 600  | 1.3994          | 0.6962   |
| 0.0412        | 11.67 | 700  | 1.5411          | 0.7109   |
| 0.0293        | 13.33 | 800  | 1.6301          | 0.6903   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.0.1
- Datasets 2.15.0
- Tokenizers 0.15.0