luigisaetta commited on
Commit
70f6fe1
1 Parent(s): 3fae773

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - wer
7
+ model-index:
8
+ - name: whisper-small-it
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # whisper-small-it
16
+
17
+ This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.2184
20
+ - Wer: 0.1223
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 1e-05
40
+ - train_batch_size: 32
41
+ - eval_batch_size: 16
42
+ - seed: 42
43
+ - distributed_type: multi-GPU
44
+ - num_devices: 4
45
+ - gradient_accumulation_steps: 2
46
+ - total_train_batch_size: 256
47
+ - total_eval_batch_size: 64
48
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
+ - lr_scheduler_type: linear
50
+ - lr_scheduler_warmup_steps: 500
51
+ - training_steps: 5000
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
57
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
58
+ | 0.1441 | 1.68 | 1000 | 0.1912 | 0.1256 |
59
+ | 0.0653 | 3.36 | 2000 | 0.1845 | 0.1182 |
60
+ | 0.0374 | 5.03 | 3000 | 0.1919 | 0.1172 |
61
+ | 0.0238 | 6.71 | 4000 | 0.2069 | 0.1202 |
62
+ | 0.0162 | 8.39 | 5000 | 0.2184 | 0.1223 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.26.0.dev0
68
+ - Pytorch 1.13.0
69
+ - Datasets 2.7.1.dev0
70
+ - Tokenizers 0.13.2