--- library_name: transformers tags: - cross-encoder - search - product-search base_model: cross-encoder/ms-marco-MiniLM-L-12-v2 model-index: - name: esci-ms-marco-MiniLM-L-12-v2 results: - task: type: text-classification metrics: - type: mrr@10 value: 91.81 - type: ndcg@10 value: 85.46 language: - en --- # Model Descripton Fine tunes a cross encoder on the Amazon ESCI dataset. # Usage ## Transformers ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from torch import no_grad model_name = "lv12/esci-ms-marco-MiniLM-L-12-v2" queries = [ "adidas shoes", "adidas sambas", "girls sandals", "backpacks", "shoes", "mustard blouse" ] documents = [ "Nike Air Max, with air cushion", "Adidas Ultraboost, the best boost you can get", "Women's sandals wide width 9", "Girl's surf backpack", "Fresh watermelon, all you can eat", "Floral yellow dress with frills and lace" ] model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) inputs = tokenizer( queries, documents, padding=True, truncation=True, return_tensors="pt", ) model.eval() with no_grad(): scores = model(**inputs).logits.cpu().detach().numpy() print(scores) ``` ### Sentence Transformers ```python from sentence_transformers import CrossEncoder model_name = "lv12/esci-ms-marco-MiniLM-L-12-v2" queries = [ "adidas shoes", "adidas sambas", "girls sandals", "backpacks", "shoes", "mustard blouse" ] documents = [ "Nike Air Max, with air cushion", "Adidas Ultraboost, the best boost you can get", "Women's sandals wide width 9", "Girl's surf backpack", "Fresh watermelon, all you can eat", "Floral yellow dress with frills and lace" ] model = CrossEncoder(model_name, max_length=512) scores = model.predict([(q, d) for q, d in zip(queries, documents)]) print(scores) ``` ## Training Trained using `CrossEntropyLoss` using `` pairs with `grade` as the label. ```python from sentence_transformers import InputExample train_samples = [ InputExample(texts=["query 1", "document 1"], label=0.3), InputExample(texts=["query 1", "document 2"], label=0.8), InputExample(texts=["query 2", "document 2"], label=0.1), ] ````