File size: 14,940 Bytes
1a90ff5 a8b376d 1a90ff5 a8b376d 90be659 a8b376d 90be659 a8b376d 90be659 a8b376d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
---
license: mit
language:
- en
metrics:
- accuracy
pipeline_tag: text-generation
---
# 🎼 ChatMusician: Fostering Intrinsic Musical Abilities Into LLM
[**🌐 DemoPage**](https://ezmonyi.github.io/ChatMusician/) | [**🤗 Dataset**](https://huggingface.co/datasets/m-a-p/MusicPile) | [**🤗 Benchmark**](https://huggingface.co/datasets/m-a-p/MusicTheoryBench) | [**📖 arXiv**](http://arxiv.org/abs/2402.16153) | [**Code**](https://github.com/hf-lin/ChatMusician)
## 🔔News
- **🔥[2023-12-10]: The release of ChatMusician's demo, code, model, data, and benchmark. 😆**
- [2023-11-30]: Checkout another awesome project [MMMU](https://huggingface.co/datasets/MMMU/MMMU/) that includes multimodal music reasoning.
## Introduction
While Large Language Models (LLMs) demonstrate impressive capabilities in text generation,
we find that their ability has yet to be generalized to music, humanity’s creative language.
We introduce **ChatMusician**, **an open-source LLM that integrates intrinsic musical abilities**.
It is based on continual pre-training and finetuning LLaMA2 on a text-compatible music representation, ABC notation, and the music is treated as a second language. ChatMusician can understand and generate music with a pure text tokenizer without any external multi-modal neural structures or tokenizers. Interestingly, endowing musical abilities does not harm language abilities, even achieving a slightly higher MMLU score. Our model is capable of composing well-structured, full-length music, conditioned on texts, chords, melodies, motifs, musical forms, etc, surpassing GPT-4 baseline. On our meticulously curated college-level music understanding benchmark, MusicTheoryBench, ChatMusician surpasses LLaMA2 and GPT-3.5 on zero-shot setting by a noticeable
margin. Our work reveals that LLMs can be an excellent compressor for music, but there remains significant territory to be conquered. Code, data, model, and benchmark are open-sourced.
<!-- <audio controls src="https://cdn-uploads.huggingface.co/production/uploads/5fd6f670053c8345eddc1b68/8NSONUjIF7KGUCfwzPCd9.mpga"></audio> -->
## Prompt Format
**Our model produces symbolic music(ABC notation) well in the following prompts.** Here are some musical tasks.
### Function: Text2music
```
Prompt:
Using ABC notation, recreate the given text as a musical score.
Meter C
Notes The parts are commonly interchanged.
Transcription 1997 by John Chambers
Key D
Note Length 1/8
Rhythm reel
Response:
X:1
L:1/8
M:2/2
K:D
"A7" FE |"D" D2 FA dAFD |"A7" CDEF G2 FE |"D" D2 FA dcdf |"E7" edcB"A7" AGFE | |"D" D2 FA dAFD |
"A7" CDEF G2 FG |"D" AdcB"A7" AGFE |"D" D2 F2 D2 :: de |"D" fefg fedc |"Em" B^ABc B2 cd |
"E7" e^def e=dcB |"A" A2 ce aABc | |"D" dcde fdAF |"G" GFGA BdcB |"D" AdcB"A7" Agec |
"D" d2 f2 d2 :|
```
```
Prompt:
Develop a tune influenced by Bach's compositions.
Response:
X:1
X:1
T:Music21 Fragment
T:Music21 Fragment
T:Music21
C:Music21
%%score 1 2 3 4
L:1/8
M:4/4
K:C
V:1 treble nm="Piano" snm="Pno"
%%MIDI program 0
%%MIDI control 7 100
%%MIDI control 10 64
L:1/4
V:2 treble nm="Piano" snm="Pno"
%%MIDI channel 3
%%MIDI program 0
%%MIDI control 7 100
%%MIDI control 10 64
V:3 bass nm="Piano" snm="Pno"
%%MIDI channel 4
%%MIDI program 0
%%MIDI control 7 100
%%MIDI control 10 64
V:4 bass nm="Piano" snm="Pno"
%%MIDI channel 5
%%MIDI program 0
%%MIDI control 7 100
%%MIDI control 10 64
V:1
z3 c | B A G F | E D !fermata!E c | d e d c | !fermata!B2 z c | B A G F | E D !fermata!E c | %7
d e d c | !fermata!B2 z e | f e d c | B A !fermata!B B | c d e d | !fermata!c2 z e | d c B A | %14
G A B c | d e d c | !fermata!B2 z e | d c B A | G A B c | d e d c | !fermata!c2 z B | A G F E | %22
D C !fermata!D c | B c d e | d c B A | !fermata!G2 z c | B A G F | E D !fermata!E c | d e d c | %29
!fermata!B2 z e | d c B A | G A B c | d e d c | !fermata!c2 z e | d c B A | G A B c | d e d c | %36
!fermata!c2 z B | A G F E | D C !fermata!D c | B c d e | d c B A | !fermata!G2 z2 |] %42
V:2
z6 CD | EF ED C2 CD | EF ED !fermata!C2 CD | EF GF ED C2 | !fermata!C6 CD | EF ED C2 CD | %6
EF ED !fermata!C2 CD | EF GF ED C2 | !fermata!C6 CD | EF GA GF ED | C2 DE !fermata!F2 DC | %11
B,C DB, C2 CD | !fermata!E6 CD | EF GA GF ED | C2 DE !fermata!F2 DC | B,C DB, C2 CD | %16
!fermata!E6 CD | EF GA GF ED | C2 DE !fermata!F2 DC | B,C DB, C2 CD | !fermata!E6 B,C | %21
DE ^FE D=C B,A, | G,^F, G,2 !fermata!G,2 =F,2 | G,2 A,B, CD EF | !fermata!G6 B,C | DE ^FE D=C B,A, | %26
G,^F, G,2 !fermata!G,2 =F,2 | G,2 A,B, CD EF | !fermata!G6 B,C | DE ^FE D=C B,A, | %30
G,^F, G,2 !fermata!G,2 =F,2 | G,2 A,B, CD EF | !fermata!G6 B,C | DE ^FE D=C B,A, | %34
G,^F, G,2 !fermata!G,2 =F,2 | G,2 A,B, CD EF | !fermata!G6 z2 |] %37
V:3
z6 G,2 | A,2 G,2 G,2 G,2 | G,2 G,2 !fermata!G,2 G,2 | G,2 A,2 B,2 C2 | !fermata!C6 G,2 | %6
A,2 G,2 G,2 G,2 | G,2 G,2 !fermata!G,2 G,2 | G,2 A,2 B,2 C2 | !fermata!C6 G,2 | G,2 A,2 B,2 C2 | %11
C2 B,2 !fermata!C2 B,2 | C2 D2 E2 D2 | !fermata!C6 G,2 | A,2 G,2 G,2 G,2 | G,2 G,2 !fermata!G,2 G,2 | %16
G,2 A,2 B,2 C2 | !fermata!C6 G,2 | G,2 A,2 B,2 C2 | C2 B,2 !fermata!C2 B,2 | C2 D2 E2 D2 | %21
!fermata!C6 B,2 | A,2 G,2 G,2 G,2 | G,2 G,2 !fermata!G,2 G,2 | G,2 A,2 B,2 C2 | !fermata!C6 B,2 | %26
A,2 G,2 G,2 G,2 | G,2 G,2 !fermata!G,2 G,2 | G,2 A,2 B,2 C2 | !fermata!C6 B,2 | A,2 G,2 G,2 G,2 | %31
G,2 G,2 !fermata!G,2 G,2 | G,2 A,2 B,2 C2 | !fermata!C6 z2 |] %34
V:4
z6"C" C,2 |"Am" A,,2"Em" E,2"C" C,2"C" C,2 |"Am" A,,2"Em" E,2"C" !fermata!C,2"C" C,2 | %3
"G" G,,2"Am" A,,2"G" B,,2"C" C,2 |"C" !fermata!C,6"C" C,2 |"Am" A,,2"Em" E,2"C" C,2"C" C,2 | %6
"Am" A,,2"Em" E,2"C" !fermata!C,2"C" C,2 |"G" G,,2"Am" A,,2"G" B,,2"C" C,2 |"C" !fermata!C,6"C" C,2 | %9
"G" G,,2"Am" A,,2"G" B,,2"C" C,2 |"C" C,2"G" G,,2"C" !fermata!C,2"C" C,2 | %11
"C" C,2"G" G,,2"Am" A,,2"G" B,,2 |"C" !fermata!C,6"C" C,2 |"G" G,,2"Am" A,,2"G" B,,2"C" C,2 | %14
"C" C,2"G" G,,2"C" !fermata!C,2"C" C,2 |"G" G,,2"Am" A,,2"G" B,,2"C" C,2 |"C" !fermata!C,6"C" C,2 | %17
"G" G,,2"Am" A,,2"G" B,,2"C" C,2 |"C" C,2"G" G,,2"C" !fermata!C,2"C" C,2 | %19
"G" G,,2"Am" A,,2"G" B,,2"C" C,2 |"C" !fermata!C,6"E" E,2 |"Am" A,,2"Em" E,2"C" C,2"C" C,2 | %
```
### Function: Melody Harmonization
```
Prompt:
Construct smooth-flowing chord progressions for the supplied music.
|: BA | G2 g2"^(C)" edeg | B2 BA"^(D7)" BcBA | G2 g2 edeg | dBAG A2 BA |
G2 g2"^(C)" edeg | B2 BA B2 d2 | e2 ef e2 (3def | gedB A2 :: BA | G2 BG dGBe |
dBBA"^(D7)" B3 A | G2 BG dGBe | dBAG A4 | G2 BG dGBe | dBBA B3 d |
e2 ef e2 (3def | gedB A2 :|
Response:
X:1
L:1/8
M:2/2
K:G
|: BA |"G" G2 g2"^(C)" edeg |"G" B2 BA"^(D7)" BcBA |"G" G2 g2"Em" edeg |"Am" A2 AG"D7" AcBA |
"G" G2 g2"^(C)" edeg |"G" B2 BA B2 d2 |"C" e2 ef e2 (3def |"D7" gedB A2 :: BA |"G" G2 BG dGBG |
"G" B2 BA"^(D7)" BcBA |"G" G2 BG"Em" dGBG |"Am" A2 AG"D7" AcBA |"G" G2 BG dGBe | dBBA B2 d2 |
"C" e2 ef e2 (3def |"D7" gedB A2 :|
```
```
Prompt:
Develop a series of chord pairings that amplify the harmonious elements in the given music piece.
E |: EAA ABc | Bee e2 d | cBA ABc | BEE E2 D | EAA ABc | Bee e2 d |
cBA ^GAB |1 A2 A A2 E :|2 A2 A GAB || c3 cdc | Bgg g2 ^g | aed cBA |
^GAB E^F^G | A^GA BAB | cde fed | cBA ^GAB |1 A2 A GAB :|2 \n A3 A2 ||
Response:
X:1
L:1/8
M:6/8
K:Amin
E |:"Am" EAA ABc |"E7" Bee e2 d |"Am" cBA ABc |"E7" BGE E2 E |
"Am" EAA ABc |"E7" Bee e2 d |"Am" cBA"E7" ^GAB |1"Am" A2 A A2 E :|2
"Am" A2 A GAB ||"C" c3 cdc |"G" Bgg g2 ^g |"Am" aed cBA |
"E7" ^GAB E^F^G |"Am" A^GA"E7" BAB |"Am" cde"Dm" fed |
"Am" cBA"E7" ^GAB |1"Am" A2 A GAB :|2 "Am" A2 A A2 ||
```
### Function: Chord Conditioned Music Generation
```
Prompt:
Develop a musical piece using the given chord progression. 'Dm', 'C', 'Dm', 'Dm', 'C', 'Dm', 'C', 'Dm'
Response:
X:1
L:1/8
M:6/8
K:F
z4 z D |"Dm" A2 A"C" G2 F |"Dm" FE D D2 D |
"Dm" A2 A"C" G2 A |"Dm" D3 D2 D |"Dm" A2 A"C" G2 F |
"Dm" FE D D2 D |"Dm" F2 G"C" E2 C |"Dm" D3 D2 D |
"F" F2 F F2 c |"Bb" d2 c"^(Gm)" B2 A |
"Gm" G2 G G2 B |"Am" A2 G"A7" FE D |"Dm" F2 F F2 c |
"Bb" d2 c"^(Gm)" B2 A |"Gm" G2 G"A7" A2 G |
"Dm" FE D D2 z |]
```
### Function: Musical Form Conditioned Music Generation
```
Prompt:
Develop a composition by incorporating elements from the given melodic structure.
Ternary, Sectional: Verse/Chorus/Bridge
Response:
X:1
L:1/8
M:6/8
K:Gmin
|:"Gm" GAB AG^F | GAB c2 c | d2 d cdB | A2 d cBA |
GAB AG^F | GAB c2 c | d2 d cdB |1 AG^F G2 D :|2
AG^F GAB |: c2 c cBA | c2 c cBA | c2 c cBA |
ABA GAB | c2 c cBA | c2 c cBA | d2 d cdB |1
AG^F GAB :|2 AG^F G2 A |:"Bbm" B3 dcB | f2 e dcB |
c2 f c2 c | cfc cBA | ABB dcB | f2 e dcB |
d2 d edc |1 cBA B2 B :|2 cBA G3 ||
```
### Function: Motif and Form Conditioned Music Generation
```
Text Input:
Create music by incorporating the assigned motif into the predetermined musical arrangement.
Musical Form Input: Only One Section
ABC Notation Music Input:
X:1
L:1/8
M:9/8
K:Emin
vB2 E E2 F G2 A
Response:
X:1
L:1/8
M:9/8
K:Emin
|:"Em" vB2 E E2 F G2 A |"D" B2 e e2 ^d e3 |
"Bm" B2 E E2 F G2 A |"G" B2 G A2 F"C" G2 E |
"Em" vB2 E E2 F G2 A |"D" B2 e e2 ^d"C" e3 |
"Em" ve2 B"^Av" A2 F"Bm" G2 A |1"G" B2 G"D" A2 F"Em" G2 E :|
2"G" B2 G"D" A2 F"G" G3 |"^(C)" ABc"^(D)" ded"G" dBG |
"^(C)" cde"D" dcB"G" A2 G |"^(C)" E2 E"Am" ABc"D" def |
"Em" g2 G"D" FAF"G" G3 |"^(C)" ABc"^(D)" ded"G" dBG |
"^(C)" cde"D" dcB"G" A2 G |"Em" e2 B"^Av" A2 F"Bm" G2 A |
"G" B2 G"D" A2 F"Em" G2 E |]
```
### Function: Music Understanding
```
Prompt:
Investigate the aspects of this musical work and convey its structural organization using suitable musical words.
X:1
L:1/8
M:2/2
K:G
G2 dG BGdG | G2 dc BAGB | A2 eA cAeA | A2 ed cAFA |
G2 dG BGdG | G2 dc BAGB | ABcd efge |1 aged cAFA :|2
aged ^cdef |: g3 f g2 ef | gedc BA G2 | eaag agea |
aged ^cdef | g3 f g2 ef |gedc BAGB | ABcd efge |1
aged ^cdef :|2 aged cAFA |:"^variations:" G2 BG dGBA |
G2 dG BAGB | A2 cA eAcA | A2 ed cAFA | G2 BG dGBA |
G2 dc BAGB | ABcd efge |1 aged cAFA :|2 aged ^cdef |:
g2 af g2 ef | gedc BAGB | Aaag ageg | aged ^cdef |
gbaf g2 ef | gedc BAGB | ABcd efge |1
aged ^cdef :|2 aged cAFA ||
Response:
Compound Binary
```
```
Prompt:
Analyze the musical work and pinpoint the consistent melodic element in every section.
X:1
L:1/8
M:4/4
K:G
ge | d2 G2 cBAG | d2 G2 cBAG | e2 A2 ABcd | edcB A2 Bc |
d2 cB g2 fe | edcB cBAG | BAGE DEGA | B2 G2 G2 :: ga |
b2 gb a2 fa | g2 eg edcB | e2 A2 ABcd | edcB A2 ga |
b2 gb a2 fa | g2 eg edcB | cBAG DEGA | B2 G2 G2 :|
Response:
X:1
L:1/8
M:4/4
K:G
ge d2 G2 cBAG d2 G2 cBAG
```
## Training Data
ChatMusician is pretrained on the 🤗 [MusicPile](https://huggingface.co/datasets/m-a-p/MusicPile), which is the first pretraining corpus for **developing musical abilities** in large language models. Check out the dataset card for more details.
And supervised finetuned on 1.1M samples(2:1 ratio between music scores
and music knowledge & music summary data) from MusicPile. Check our [paper](http://arxiv.org/abs/2402.16153) for more details.
## Training Procedure
We initialized a fp16-precision ChatMusician-Base from the LLaMA2-7B-Base weights, and applied a continual pre-training plus fine-tuning pipeline. LoRA adapters were integrated into the attention and MLP layers, with additional training on embeddings and all linear layers. The maximum sequence length
was 2048. We utilized 16 80GB-A800 GPUs for one epoch pre-training and 8 32GB-V100 GPUs for two epoch fine-tuning. DeepSpeed was employed for memory efficiency, and the AdamW optimizer was used with a 1e-4 learning rate and a 5% warmup cosine scheduler. Gradient clipping was set at 1.0. The LoRA parameters dimension, alpha, and
dropout were set to 64, 16, and 0.1, with a batch size of 8.
## Evaluation
1. Music understanding abilities are evaluated on the [MusicTheoryBench](https://huggingface.co/datasets/m-a-p/MusicTheoryBench).
2. General language abilities of ChatMusician are evaluated on the [Massive Multitask Language Understanding (MMLU) dataset](https://huggingface.co/datasets/lukaemon/mmlu).
## Usage
You can use the models through Huggingface's Transformers library. Check our Github repo for more advanced use: [https://github.com/hf-lin/ChatMusician](https://github.com/hf-lin/ChatMusician)
## CLI demo
```
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from string import Template
prompt_template = Template("Human: ${inst} </s> Assistant: ")
tokenizer = AutoTokenizer.from_pretrained("m-a-p/ChatMusician-v1-sft-78k", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("m-a-p/ChatMusician-v1-sft-78k", trust_remote_code=True).eval()
model.cuda()
generation_config = GenerationConfig(
temperature=0.2,
top_k=40,
top_p=0.9,
do_sample=True,
num_beams=1,
repetition_penalty=1.1,
min_new_tokens=10,
max_new_tokens=1536
)
instruction = """Using ABC notation, recreate the given text as a musical score.
Meter C
Notes The parts are commonly interchanged.
Transcription 1997 by John Chambers
Key D
Note Length 1/8
Rhythm reel
"""
prompt = prompt_template.safe_substitute({"inst": instruction})
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False)
response = model.generate(
input_ids=inputs["input_ids"].to(model.device),
attention_mask=inputs['attention_mask'].to(model.device),
eos_token_id=tokenizer.eos_token_id,
generation_config=generation_config,
)
response = tokenizer.decode(response[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True)
print(response)
```
## Intended Uses
These models are trained for research purposes. They are designed to solve general math problems. They can be used in educational software, tutoring systems, or any application where a solution to a math problem is needed. The models can generate both a chain of thought (CoT) rationale and a program of thought (PoT) rationale, providing a comprehensive solution to a given math problem.
## Limitations
We've tried our best to build math generalist models. However, we acknowledge that the models' performance may vary based on the complexity and specifics of the math problem. Still not all mathematical fields can be covered comprehensively.
## Citation
If you find our work helpful, feel free to give us a cite.
```
@misc{yuan2024chatmusician,
title={ChatMusician: Understanding and Generating Music Intrinsically with LLM},
author={Ruibin Yuan and Hanfeng Lin and Yi Wang and Zeyue Tian and Shangda Wu and Tianhao Shen and Ge Zhang and Yuhang Wu and Cong Liu and Ziya Zhou and Ziyang Ma and Liumeng Xue and Ziyu Wang and Qin Liu and Tianyu Zheng and Yizhi Li and Yinghao Ma and Yiming Liang and Xiaowei Chi and Ruibo Liu and Zili Wang and Pengfei Li and Jingcheng Wu and Chenghua Lin and Qifeng Liu and Tao Jiang and Wenhao Huang and Wenhu Chen and Emmanouil Benetos and Jie Fu and Gus Xia and Roger Dannenberg and Wei Xue and Shiyin Kang and Yike Guo},
year={2024},
eprint={2402.16153},
archivePrefix={arXiv},
primaryClass={cs.SD}
}
``` |