Upload 2 files
Browse files- configuration_MERT.py +131 -0
- modeling_MERT.py +409 -0
configuration_MERT.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MERT model configuration
|
3 |
+
"""
|
4 |
+
|
5 |
+
import functools
|
6 |
+
import operator
|
7 |
+
|
8 |
+
from transformers.configuration_utils import PretrainedConfig
|
9 |
+
from transformers.utils import logging
|
10 |
+
|
11 |
+
logger = logging.get_logger(__name__)
|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
class MERTConfig(PretrainedConfig):
|
16 |
+
r"""
|
17 |
+
"""
|
18 |
+
model_type = "mert_model"
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
vocab_size=32,
|
23 |
+
hidden_size=768,
|
24 |
+
num_hidden_layers=12,
|
25 |
+
num_attention_heads=12,
|
26 |
+
intermediate_size=3072,
|
27 |
+
hidden_act="gelu",
|
28 |
+
hidden_dropout=0.1,
|
29 |
+
activation_dropout=0.1,
|
30 |
+
attention_dropout=0.1,
|
31 |
+
feat_proj_layer_norm=True,
|
32 |
+
feat_proj_dropout=0.0,
|
33 |
+
final_dropout=0.1,
|
34 |
+
layerdrop=0.1,
|
35 |
+
initializer_range=0.02,
|
36 |
+
layer_norm_eps=1e-5,
|
37 |
+
feat_extract_norm="group",
|
38 |
+
feat_extract_activation="gelu",
|
39 |
+
conv_dim=(512, 512, 512, 512, 512, 512, 512),
|
40 |
+
conv_stride=(5, 2, 2, 2, 2, 2, 2),
|
41 |
+
conv_kernel=(10, 3, 3, 3, 3, 2, 2),
|
42 |
+
conv_bias=False,
|
43 |
+
num_conv_pos_embeddings=128,
|
44 |
+
num_conv_pos_embedding_groups=16,
|
45 |
+
do_stable_layer_norm=False,
|
46 |
+
apply_spec_augment=True,
|
47 |
+
mask_time_prob=0.05,
|
48 |
+
mask_time_length=10,
|
49 |
+
mask_time_min_masks=2,
|
50 |
+
mask_feature_prob=0.0,
|
51 |
+
mask_feature_length=10,
|
52 |
+
mask_feature_min_masks=0,
|
53 |
+
ctc_loss_reduction="sum",
|
54 |
+
ctc_zero_infinity=False,
|
55 |
+
use_weighted_layer_sum=False,
|
56 |
+
classifier_proj_size=256,
|
57 |
+
pad_token_id=0,
|
58 |
+
bos_token_id=1,
|
59 |
+
eos_token_id=2,
|
60 |
+
feature_extractor_cqt=False,
|
61 |
+
feature_extractor_cqt_bins=336,
|
62 |
+
deepnorm=False,
|
63 |
+
attention_relax=-1.0,
|
64 |
+
**kwargs
|
65 |
+
):
|
66 |
+
super().__init__(**kwargs, pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id)
|
67 |
+
self.hidden_size = hidden_size
|
68 |
+
self.feat_extract_norm = feat_extract_norm
|
69 |
+
self.feat_extract_activation = feat_extract_activation
|
70 |
+
self.conv_dim = list(conv_dim)
|
71 |
+
self.conv_stride = list(conv_stride)
|
72 |
+
self.conv_kernel = list(conv_kernel)
|
73 |
+
self.conv_bias = conv_bias
|
74 |
+
self.num_conv_pos_embeddings = num_conv_pos_embeddings
|
75 |
+
self.num_conv_pos_embedding_groups = num_conv_pos_embedding_groups
|
76 |
+
self.num_feat_extract_layers = len(self.conv_dim)
|
77 |
+
self.num_hidden_layers = num_hidden_layers
|
78 |
+
self.intermediate_size = intermediate_size
|
79 |
+
self.hidden_act = hidden_act
|
80 |
+
self.num_attention_heads = num_attention_heads
|
81 |
+
self.hidden_dropout = hidden_dropout
|
82 |
+
self.attention_dropout = attention_dropout
|
83 |
+
self.activation_dropout = activation_dropout
|
84 |
+
self.feat_proj_layer_norm = feat_proj_layer_norm
|
85 |
+
self.feat_proj_dropout = feat_proj_dropout
|
86 |
+
self.final_dropout = final_dropout
|
87 |
+
self.layerdrop = layerdrop
|
88 |
+
self.layer_norm_eps = layer_norm_eps
|
89 |
+
self.initializer_range = initializer_range
|
90 |
+
self.vocab_size = vocab_size
|
91 |
+
self.do_stable_layer_norm = do_stable_layer_norm
|
92 |
+
self.use_weighted_layer_sum = use_weighted_layer_sum
|
93 |
+
self.classifier_proj_size = classifier_proj_size
|
94 |
+
|
95 |
+
if (
|
96 |
+
(len(self.conv_stride) != self.num_feat_extract_layers)
|
97 |
+
or (len(self.conv_kernel) != self.num_feat_extract_layers)
|
98 |
+
or (len(self.conv_dim) != self.num_feat_extract_layers)
|
99 |
+
):
|
100 |
+
raise ValueError(
|
101 |
+
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
|
102 |
+
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
|
103 |
+
f" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,"
|
104 |
+
f" `len(config.conv_kernel) = {len(self.conv_kernel)}`."
|
105 |
+
)
|
106 |
+
|
107 |
+
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
|
108 |
+
self.apply_spec_augment = apply_spec_augment
|
109 |
+
self.mask_time_prob = mask_time_prob
|
110 |
+
self.mask_time_length = mask_time_length
|
111 |
+
self.mask_time_min_masks = mask_time_min_masks
|
112 |
+
self.mask_feature_prob = mask_feature_prob
|
113 |
+
self.mask_feature_length = mask_feature_length
|
114 |
+
self.mask_feature_min_masks = mask_feature_min_masks
|
115 |
+
|
116 |
+
# ctc loss
|
117 |
+
self.ctc_loss_reduction = ctc_loss_reduction
|
118 |
+
self.ctc_zero_infinity = ctc_zero_infinity
|
119 |
+
|
120 |
+
# cqt feature extractor
|
121 |
+
self.feature_extractor_cqt = feature_extractor_cqt
|
122 |
+
self.feature_extractor_cqt_bins = feature_extractor_cqt_bins
|
123 |
+
|
124 |
+
# deepnorm: up-scale weighted residual conection + down-scale initial value transformer encoder
|
125 |
+
self.deepnorm = deepnorm
|
126 |
+
|
127 |
+
self.attention_relax = attention_relax
|
128 |
+
|
129 |
+
@property
|
130 |
+
def inputs_to_logits_ratio(self):
|
131 |
+
return functools.reduce(operator.mul, self.conv_stride, 1)
|
modeling_MERT.py
ADDED
@@ -0,0 +1,409 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
MERT model definition.
|
3 |
+
We largely adapt codes from:
|
4 |
+
1. https://github.com/huggingface/transformers/blob/main/src/transformers/models/hubert/modeling_hubert.py
|
5 |
+
2. https://github.com/facebookresearch/fairseq/blob/main/fairseq/models/wav2vec/wav2vec2.py
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Optional, Tuple, Union
|
9 |
+
from transformers.modeling_outputs import BaseModelOutput
|
10 |
+
import torch
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from transformers.models.hubert.modeling_hubert import (
|
14 |
+
HubertFeatureEncoder,
|
15 |
+
HubertModel,
|
16 |
+
HubertEncoderStableLayerNorm,
|
17 |
+
HubertEncoder,
|
18 |
+
HubertEncoderLayer,
|
19 |
+
HubertPositionalConvEmbedding,
|
20 |
+
HubertAttention,
|
21 |
+
HubertFeedForward,
|
22 |
+
)
|
23 |
+
|
24 |
+
try:
|
25 |
+
from nnAudio import features as nnAudioFeatures
|
26 |
+
NNAUDIO_INSTALLED=True
|
27 |
+
except:
|
28 |
+
print("WARNING: feature_extractor_cqt requires the libray 'nnAudio'")
|
29 |
+
NNAUDIO_INSTALLED=False
|
30 |
+
|
31 |
+
from .configuration_MERT import MERTConfig
|
32 |
+
|
33 |
+
class MERTFeatureProjection(nn.Module):
|
34 |
+
def __init__(self, config):
|
35 |
+
super().__init__()
|
36 |
+
self.feat_proj_layer_norm = config.feat_proj_layer_norm
|
37 |
+
self.feature_extractor_cqt = config.feature_extractor_cqt
|
38 |
+
|
39 |
+
if self.feature_extractor_cqt:
|
40 |
+
# v3 concat features
|
41 |
+
self.feature_dimension = config.conv_dim[-1] + config.feature_extractor_cqt_bins
|
42 |
+
print(f"feature dimention: {self.feature_dimension}")
|
43 |
+
else:
|
44 |
+
self.feature_dimension = config.conv_dim[-1]
|
45 |
+
if self.feat_proj_layer_norm:
|
46 |
+
self.layer_norm = nn.LayerNorm(self.feature_dimension, eps=config.layer_norm_eps)
|
47 |
+
self.projection = nn.Linear(self.feature_dimension, config.hidden_size)
|
48 |
+
self.dropout = nn.Dropout(config.feat_proj_dropout)
|
49 |
+
|
50 |
+
def forward(self, hidden_states):
|
51 |
+
# non-projected hidden states are needed for quantization
|
52 |
+
if self.feat_proj_layer_norm:
|
53 |
+
hidden_states = self.layer_norm(hidden_states)
|
54 |
+
hidden_states = self.projection(hidden_states)
|
55 |
+
hidden_states = self.dropout(hidden_states)
|
56 |
+
return hidden_states
|
57 |
+
|
58 |
+
class MERTModel(HubertModel):
|
59 |
+
# overwrite config class
|
60 |
+
config_class = MERTConfig
|
61 |
+
base_model_prefix = "mert_model"
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
config: MERTConfig,
|
65 |
+
) -> None:
|
66 |
+
"""
|
67 |
+
initialize the with the grandparent method HubertPreTrainedModel.__init__()
|
68 |
+
and modify the HuBERTModel.__init__()
|
69 |
+
"""
|
70 |
+
super(HubertModel, self).__init__(config)
|
71 |
+
|
72 |
+
self.config = config
|
73 |
+
|
74 |
+
self.feature_extractor = HubertFeatureEncoder(config)
|
75 |
+
self.feature_projection = MERTFeatureProjection(config) # replace Feature Projection for introcuing new feature
|
76 |
+
|
77 |
+
if self.config.feature_extractor_cqt:
|
78 |
+
assert NNAUDIO_INSTALLED, "ERROR: feature_extractor_cqt requires the libray 'nnAudio', try after `pip install nnAudio` "
|
79 |
+
print('initializing cqt extractor for MERT')
|
80 |
+
self.feature_extractor_cqt = nnAudioFeatures.cqt.CQT(sr=self.config.sample_rate, hop_length=self.config.sample_rate//50, fmin=32.7,
|
81 |
+
fmax=None, n_bins=self.config.feature_extractor_cqt_bins, bins_per_octave=self.config.feature_extractor_cqt_bins//7,
|
82 |
+
filter_scale=1, norm=1, window='hann', center=True,
|
83 |
+
pad_mode='constant', trainable=False,
|
84 |
+
output_format='Magnitude', verbose=True)
|
85 |
+
|
86 |
+
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
87 |
+
self.masked_spec_embed = nn.Parameter(torch.FloatTensor(config.hidden_size).uniform_())
|
88 |
+
|
89 |
+
|
90 |
+
if config.do_stable_layer_norm:
|
91 |
+
assert not config.deepnorm, "must use post-layer_norm with deepnorm"
|
92 |
+
self.encoder = HubertEncoderStableLayerNorm(config)
|
93 |
+
else:
|
94 |
+
if config.deepnorm:
|
95 |
+
self.encoder = HubertEncoder_extend(config)
|
96 |
+
else:
|
97 |
+
self.encoder = HubertEncoder(config)
|
98 |
+
|
99 |
+
# Initialize weights and apply final processing
|
100 |
+
self.post_init()
|
101 |
+
|
102 |
+
def forward(self, input_values: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, mask_time_indices: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None) -> Union[Tuple, BaseModelOutput]:
|
103 |
+
|
104 |
+
# return super().forward(input_values, attention_mask, mask_time_indices, output_attentions, output_hidden_states, return_dict)
|
105 |
+
|
106 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
107 |
+
output_hidden_states = (
|
108 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
109 |
+
)
|
110 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
111 |
+
|
112 |
+
extract_features = self.feature_extractor(input_values)
|
113 |
+
extract_features = extract_features.transpose(1, 2)
|
114 |
+
|
115 |
+
# add additional cqt features for transformer input
|
116 |
+
if self.config.feature_extractor_cqt:
|
117 |
+
features_cqt = self.feature_extractor_cqt(input_values).transpose(1, 2)
|
118 |
+
features_cqt = features_cqt[:,:extract_features.shape[1],:] # align shape
|
119 |
+
# # v2
|
120 |
+
# features_cqt = self.post_cqt_feature_proj(features_cqt)
|
121 |
+
# extract_features = self.feature_projection.layer_norm(extract_features) + self.feature_projection.layer_norm(features_cqt) #v2
|
122 |
+
# v3
|
123 |
+
extract_features = torch.cat([extract_features,features_cqt], 2)
|
124 |
+
|
125 |
+
if attention_mask is not None:
|
126 |
+
# compute reduced attention_mask corresponding to feature vectors
|
127 |
+
attention_mask = self._get_feature_vector_attention_mask(extract_features.shape[1], attention_mask)
|
128 |
+
|
129 |
+
hidden_states = self.feature_projection(extract_features)
|
130 |
+
hidden_states = self._mask_hidden_states(hidden_states, mask_time_indices=mask_time_indices)
|
131 |
+
|
132 |
+
encoder_outputs = self.encoder(
|
133 |
+
hidden_states,
|
134 |
+
attention_mask=attention_mask,
|
135 |
+
output_attentions=output_attentions,
|
136 |
+
output_hidden_states=output_hidden_states,
|
137 |
+
return_dict=return_dict,
|
138 |
+
)
|
139 |
+
|
140 |
+
hidden_states = encoder_outputs[0] # take last_hidden from encoder output
|
141 |
+
|
142 |
+
if not return_dict:
|
143 |
+
return (hidden_states,) + encoder_outputs[1:]
|
144 |
+
|
145 |
+
return BaseModelOutput(
|
146 |
+
last_hidden_state=hidden_states,
|
147 |
+
hidden_states=encoder_outputs.hidden_states,
|
148 |
+
attentions=encoder_outputs.attentions,
|
149 |
+
)
|
150 |
+
|
151 |
+
|
152 |
+
class HubertEncoder_extend(HubertEncoder):
|
153 |
+
def __init__(self, config):
|
154 |
+
# super().__init__()
|
155 |
+
# call nn module initialization
|
156 |
+
nn.Module.__init__(self)
|
157 |
+
# super(HubertEncoder_extend, self).__init__()
|
158 |
+
|
159 |
+
self.config = config
|
160 |
+
self.pos_conv_embed = HubertPositionalConvEmbedding(config)
|
161 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
162 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
163 |
+
|
164 |
+
|
165 |
+
self.layers = nn.ModuleList([HubertEncoderLayerExtend(config) for _ in range(config.num_hidden_layers)])
|
166 |
+
|
167 |
+
self.gradient_checkpointing = False
|
168 |
+
|
169 |
+
if config.deepnorm:
|
170 |
+
import math
|
171 |
+
init_scale = math.pow(8.0 * config.num_hidden_layers, 0.25)
|
172 |
+
for name, p in self.named_parameters():
|
173 |
+
if (
|
174 |
+
"feed_forward.intermediate_dense" in name
|
175 |
+
or "feed_forward.output_dense" in name
|
176 |
+
or "out_proj" in name
|
177 |
+
or "v_proj" in name
|
178 |
+
):
|
179 |
+
p.data.div_(init_scale)
|
180 |
+
|
181 |
+
class HubertEncoderLayerExtend(HubertEncoderLayer):
|
182 |
+
def __init__(self, config):
|
183 |
+
nn.Module.__init__(self)
|
184 |
+
# super(HubertEncoderLayerExtend, self).__init__()
|
185 |
+
if config.attention_relax > 0 :
|
186 |
+
self.attention = HubertAttention_extend(
|
187 |
+
embed_dim=config.hidden_size,
|
188 |
+
num_heads=config.num_attention_heads,
|
189 |
+
dropout=config.attention_dropout,
|
190 |
+
is_decoder=False,
|
191 |
+
attention_relax=config.attention_relax,
|
192 |
+
)
|
193 |
+
else:
|
194 |
+
self.attention = HubertAttention(
|
195 |
+
embed_dim=config.hidden_size,
|
196 |
+
num_heads=config.num_attention_heads,
|
197 |
+
dropout=config.attention_dropout,
|
198 |
+
is_decoder=False,
|
199 |
+
)
|
200 |
+
self.dropout = nn.Dropout(config.hidden_dropout)
|
201 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
202 |
+
self.feed_forward = HubertFeedForward(config)
|
203 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
204 |
+
|
205 |
+
if config.deepnorm:
|
206 |
+
import math
|
207 |
+
self.residual_alpha = math.pow(2.0 * config.num_hidden_layers, 0.25)
|
208 |
+
else:
|
209 |
+
self.residual_alpha = 1.0
|
210 |
+
|
211 |
+
def residual_connection(self, x, residual):
|
212 |
+
'''
|
213 |
+
residual: input before f()
|
214 |
+
x: output of f(residual)
|
215 |
+
'''
|
216 |
+
return residual * self.residual_alpha + x
|
217 |
+
|
218 |
+
def forward(self, hidden_states, attention_mask=None, output_attentions=False):
|
219 |
+
attn_residual = hidden_states
|
220 |
+
hidden_states, attn_weights, _ = self.attention(
|
221 |
+
hidden_states, attention_mask=attention_mask, output_attentions=output_attentions
|
222 |
+
)
|
223 |
+
hidden_states = self.dropout(hidden_states)
|
224 |
+
|
225 |
+
# hidden_states = attn_residual + hidden_states
|
226 |
+
hidden_states = self.residual_connection(hidden_states, attn_residual)
|
227 |
+
|
228 |
+
hidden_states = self.layer_norm(hidden_states)
|
229 |
+
|
230 |
+
# hidden_states = hidden_states + self.feed_forward(hidden_states)
|
231 |
+
ffn_residual = hidden_states
|
232 |
+
hidden_states = self.feed_forward(hidden_states)
|
233 |
+
hidden_states = self.residual_connection(hidden_states, ffn_residual)
|
234 |
+
|
235 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
236 |
+
|
237 |
+
outputs = (hidden_states,)
|
238 |
+
|
239 |
+
if output_attentions:
|
240 |
+
outputs += (attn_weights,)
|
241 |
+
|
242 |
+
return outputs
|
243 |
+
|
244 |
+
|
245 |
+
class HubertAttention_extend(nn.Module):
|
246 |
+
def __init__(
|
247 |
+
self,
|
248 |
+
embed_dim: int,
|
249 |
+
num_heads: int,
|
250 |
+
dropout: float = 0.0,
|
251 |
+
is_decoder: bool = False,
|
252 |
+
bias: bool = True,
|
253 |
+
attention_relax: float = -1.0,
|
254 |
+
):
|
255 |
+
super().__init__()
|
256 |
+
# nn.Module.__init__(self)
|
257 |
+
self.embed_dim = embed_dim
|
258 |
+
self.num_heads = num_heads
|
259 |
+
self.dropout = dropout
|
260 |
+
self.head_dim = embed_dim // num_heads
|
261 |
+
|
262 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
263 |
+
raise ValueError(
|
264 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
265 |
+
f" and `num_heads`: {num_heads})."
|
266 |
+
)
|
267 |
+
self.scaling = self.head_dim**-0.5
|
268 |
+
self.is_decoder = is_decoder
|
269 |
+
|
270 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
271 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
272 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
273 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
274 |
+
|
275 |
+
if attention_relax > 0:
|
276 |
+
self.attention_relax = attention_relax
|
277 |
+
|
278 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
279 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
280 |
+
|
281 |
+
def forward(
|
282 |
+
self,
|
283 |
+
hidden_states: torch.Tensor,
|
284 |
+
key_value_states: Optional[torch.Tensor] = None,
|
285 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
286 |
+
attention_mask: Optional[torch.Tensor] = None,
|
287 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
288 |
+
output_attentions: bool = False,
|
289 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
290 |
+
"""Input shape: Batch x Time x Channel"""
|
291 |
+
|
292 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
293 |
+
# for the decoder
|
294 |
+
is_cross_attention = key_value_states is not None
|
295 |
+
|
296 |
+
bsz, tgt_len, _ = hidden_states.size()
|
297 |
+
|
298 |
+
# get query proj
|
299 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
300 |
+
# get key, value proj
|
301 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
302 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
303 |
+
# the provided `key_value_states` to support prefix tuning
|
304 |
+
if (
|
305 |
+
is_cross_attention
|
306 |
+
and past_key_value is not None
|
307 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
308 |
+
):
|
309 |
+
# reuse k,v, cross_attentions
|
310 |
+
key_states = past_key_value[0]
|
311 |
+
value_states = past_key_value[1]
|
312 |
+
elif is_cross_attention:
|
313 |
+
# cross_attentions
|
314 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
315 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
316 |
+
elif past_key_value is not None:
|
317 |
+
# reuse k, v, self_attention
|
318 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
319 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
320 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
321 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
322 |
+
else:
|
323 |
+
# self_attention
|
324 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
325 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
326 |
+
|
327 |
+
if self.is_decoder:
|
328 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
329 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
330 |
+
# key/value_states (first "if" case)
|
331 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
332 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
333 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
334 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
335 |
+
past_key_value = (key_states, value_states)
|
336 |
+
|
337 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
338 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
339 |
+
key_states = key_states.view(*proj_shape)
|
340 |
+
value_states = value_states.view(*proj_shape)
|
341 |
+
|
342 |
+
src_len = key_states.size(1)
|
343 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
344 |
+
|
345 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
346 |
+
raise ValueError(
|
347 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
348 |
+
f" {attn_weights.size()}"
|
349 |
+
)
|
350 |
+
|
351 |
+
if attention_mask is not None:
|
352 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
353 |
+
raise ValueError(
|
354 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
355 |
+
)
|
356 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
357 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
358 |
+
|
359 |
+
if self.attention_relax > 0:
|
360 |
+
# => (bsz, self.num_heads, tgt_len, src_len)
|
361 |
+
# attn_weights_relax = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)/self.attention_relax
|
362 |
+
# => (bsz*self.num_heads, tgt_len, src_len)
|
363 |
+
attn_weights_relax = attn_weights / self.attention_relax
|
364 |
+
|
365 |
+
# => (bsz* self.num_heads, tgt_len, 1)
|
366 |
+
attn_max_relax = torch.max(attn_weights_relax, dim=-1, keepdim=False).unsqueeze(2)
|
367 |
+
attn_weights = (attn_weights_relax - attn_max_relax) * self.attention_relax
|
368 |
+
|
369 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
370 |
+
|
371 |
+
if layer_head_mask is not None:
|
372 |
+
if layer_head_mask.size() != (self.num_heads,):
|
373 |
+
raise ValueError(
|
374 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
375 |
+
f" {layer_head_mask.size()}"
|
376 |
+
)
|
377 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
378 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
379 |
+
|
380 |
+
if output_attentions:
|
381 |
+
# this operation is a bit awkward, but it's required to
|
382 |
+
# make sure that attn_weights keeps its gradient.
|
383 |
+
# In order to do so, attn_weights have to be reshaped
|
384 |
+
# twice and have to be reused in the following
|
385 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
386 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
387 |
+
else:
|
388 |
+
attn_weights_reshaped = None
|
389 |
+
|
390 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
391 |
+
|
392 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
393 |
+
|
394 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
395 |
+
raise ValueError(
|
396 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
397 |
+
f" {attn_output.size()}"
|
398 |
+
)
|
399 |
+
|
400 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
401 |
+
attn_output = attn_output.transpose(1, 2)
|
402 |
+
|
403 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
404 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
405 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
406 |
+
|
407 |
+
attn_output = self.out_proj(attn_output)
|
408 |
+
|
409 |
+
return attn_output, attn_weights_reshaped, past_key_value
|