Upload 3 files (#2)
Browse files- Upload 3 files (7a97910cdfb349b5583b89e51c37dae71f3a5ba9)
Co-authored-by: paralym <[email protected]>
- Yi_logo.svg +7 -0
- convert_llama_megatron_hf.py +382 -0
- m-a-p.png +0 -0
Yi_logo.svg
ADDED
convert_llama_megatron_hf.py
ADDED
@@ -0,0 +1,382 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
import os
|
3 |
+
from collections import OrderedDict
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from transformers import LlamaConfig, LlamaForCausalLM
|
7 |
+
from transformers.models.llama.modeling_llama import LlamaDecoderLayer
|
8 |
+
import accelerate
|
9 |
+
|
10 |
+
transformer_layer_name_list = {
|
11 |
+
"input_norm": [
|
12 |
+
"input_norm.weight",
|
13 |
+
"self_attention.norm_qkv.layer_norm_weight",
|
14 |
+
],
|
15 |
+
"query_key_value": [
|
16 |
+
"self_attention.query_key_value.weight",
|
17 |
+
"self_attention.norm_qkv.weight",
|
18 |
+
],
|
19 |
+
"query": ["self_attention.query.weight"],
|
20 |
+
"key_value": ["self_attention.key_value.weight"],
|
21 |
+
"o_proj": ["self_attention.dense.weight", "self_attention.proj.weight"],
|
22 |
+
"mlp_gate_up": ["mlp.dense_h_to_4h.weight", "norm_mlp.fc1_weight"],
|
23 |
+
"mlp_down": ["mlp.dense_4h_to_h.weight", "norm_mlp.fc2_weight"],
|
24 |
+
"post_attention_norm": [
|
25 |
+
"post_attention_norm.weight",
|
26 |
+
"norm_mlp.layer_norm_weight",
|
27 |
+
],
|
28 |
+
}
|
29 |
+
|
30 |
+
|
31 |
+
def recursive_print(name, val, spaces=0):
|
32 |
+
# Format the message.
|
33 |
+
if name is None:
|
34 |
+
msg = None
|
35 |
+
else:
|
36 |
+
fmt = "." * max(0, spaces - 2) + "# {:" + str(50 - spaces) + "s}"
|
37 |
+
msg = fmt.format(name)
|
38 |
+
|
39 |
+
# Print and recurse (if needed).
|
40 |
+
if isinstance(val, dict):
|
41 |
+
if msg is not None:
|
42 |
+
print(msg)
|
43 |
+
for k in val.keys():
|
44 |
+
recursive_print(k, val[k], spaces + 2)
|
45 |
+
elif isinstance(val, torch.Tensor):
|
46 |
+
print(msg, ":", val.size())
|
47 |
+
else:
|
48 |
+
print(msg, ":", val)
|
49 |
+
|
50 |
+
|
51 |
+
def get(dicts, key):
|
52 |
+
return [dict[key] for dict in dicts]
|
53 |
+
|
54 |
+
|
55 |
+
def check_get(dicts, prefix, key_list):
|
56 |
+
return [
|
57 |
+
dict[prefix + key] for dict in dicts for key in key_list if prefix + key in dict
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
def check_assign(encoder, this_layer_index, this_encoder, layer_index, key_list):
|
62 |
+
for key in key_list:
|
63 |
+
full_key = f"layers.{layer_index}." + key
|
64 |
+
if full_key in this_encoder:
|
65 |
+
encoder[f"layers.{this_layer_index}." + key] = this_encoder[full_key]
|
66 |
+
break
|
67 |
+
return encoder
|
68 |
+
|
69 |
+
|
70 |
+
def merge_col(tensors):
|
71 |
+
return torch.cat(
|
72 |
+
[
|
73 |
+
tensor["weight"] if type(tensor) is OrderedDict else tensor
|
74 |
+
for tensor in tensors
|
75 |
+
],
|
76 |
+
dim=0,
|
77 |
+
)
|
78 |
+
|
79 |
+
|
80 |
+
def merge_row(tensors):
|
81 |
+
return torch.cat(
|
82 |
+
[
|
83 |
+
tensor["weight"] if type(tensor) is OrderedDict else tensor
|
84 |
+
for tensor in tensors
|
85 |
+
],
|
86 |
+
dim=1,
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
def convert_megatron_checkpoint(hf_model, state_dicts, model_config: LlamaConfig):
|
91 |
+
# The model.
|
92 |
+
models = get(state_dicts, "model")
|
93 |
+
|
94 |
+
# The language model.
|
95 |
+
lms = get(models, "language_model")
|
96 |
+
|
97 |
+
# The embeddings.
|
98 |
+
embeddings = get(lms, "embedding")
|
99 |
+
|
100 |
+
# The word embeddings.
|
101 |
+
word_embeddings = get(embeddings, "word_embeddings")
|
102 |
+
|
103 |
+
# Truncate the embedding table to vocab_size rows.
|
104 |
+
merged_padded_word_embeddings = merge_col(word_embeddings)
|
105 |
+
merged_word_embeddings = merged_padded_word_embeddings[: model_config.vocab_size, :]
|
106 |
+
hf_model.model.embed_tokens.load_state_dict(
|
107 |
+
{"weight": merged_word_embeddings}, strict=True
|
108 |
+
)
|
109 |
+
|
110 |
+
# The transformer.
|
111 |
+
transformers = get(lms, "encoder")
|
112 |
+
|
113 |
+
for i in range(model_config.num_hidden_layers):
|
114 |
+
print("Converting layer", i)
|
115 |
+
prefix = f"layers.{i}."
|
116 |
+
layer: LlamaDecoderLayer = hf_model.model.layers[i]
|
117 |
+
|
118 |
+
layer.input_layernorm.load_state_dict(
|
119 |
+
{
|
120 |
+
"weight": check_get(
|
121 |
+
transformers, prefix, transformer_layer_name_list["input_norm"]
|
122 |
+
)[0]
|
123 |
+
},
|
124 |
+
strict=True,
|
125 |
+
)
|
126 |
+
|
127 |
+
hidden_size = model_config.hidden_size
|
128 |
+
inter_size = model_config.intermediate_size
|
129 |
+
num_heads = model_config.num_attention_heads
|
130 |
+
kv_heads = model_config.num_key_value_heads
|
131 |
+
kv_hidden_size = hidden_size // num_heads * kv_heads
|
132 |
+
if num_heads == kv_heads:
|
133 |
+
qkv = merge_col(
|
134 |
+
check_get(
|
135 |
+
transformers, prefix, transformer_layer_name_list["query_key_value"]
|
136 |
+
)
|
137 |
+
)
|
138 |
+
qkv = qkv.view(num_heads, 3, hidden_size // num_heads, hidden_size)
|
139 |
+
q, k, v = torch.chunk(qkv, 3, dim=1)
|
140 |
+
q, k, v = (
|
141 |
+
q.reshape(hidden_size, hidden_size),
|
142 |
+
k.reshape(hidden_size, hidden_size),
|
143 |
+
v.reshape(hidden_size, hidden_size),
|
144 |
+
)
|
145 |
+
else:
|
146 |
+
qkv = merge_col(
|
147 |
+
check_get(
|
148 |
+
transformers, prefix, transformer_layer_name_list["query_key_value"]
|
149 |
+
)
|
150 |
+
)
|
151 |
+
|
152 |
+
num_queries_per_key_value = num_heads // kv_heads
|
153 |
+
qkv = qkv.view(
|
154 |
+
kv_heads,
|
155 |
+
num_queries_per_key_value + 2,
|
156 |
+
hidden_size // num_heads,
|
157 |
+
hidden_size,
|
158 |
+
)
|
159 |
+
q, k, v = torch.split(qkv, [num_queries_per_key_value, 1, 1], dim=1)
|
160 |
+
|
161 |
+
|
162 |
+
q, k, v = (
|
163 |
+
q.reshape(hidden_size, hidden_size),
|
164 |
+
k.reshape(kv_hidden_size, hidden_size),
|
165 |
+
v.reshape(kv_hidden_size, hidden_size),
|
166 |
+
)
|
167 |
+
|
168 |
+
layer.self_attn.q_proj.load_state_dict({"weight": q}, strict=True)
|
169 |
+
layer.self_attn.k_proj.load_state_dict({"weight": k}, strict=True)
|
170 |
+
layer.self_attn.v_proj.load_state_dict({"weight": v}, strict=True)
|
171 |
+
|
172 |
+
layer.self_attn.o_proj.load_state_dict(
|
173 |
+
{
|
174 |
+
"weight": merge_row(
|
175 |
+
check_get(
|
176 |
+
transformers, prefix, transformer_layer_name_list["o_proj"]
|
177 |
+
)
|
178 |
+
)
|
179 |
+
},
|
180 |
+
strict=True,
|
181 |
+
)
|
182 |
+
|
183 |
+
gate, up = (
|
184 |
+
merge_col(
|
185 |
+
check_get(
|
186 |
+
transformers, prefix, transformer_layer_name_list["mlp_gate_up"]
|
187 |
+
)
|
188 |
+
)
|
189 |
+
.view(len(state_dicts), 2, -1, hidden_size)
|
190 |
+
.chunk(2, dim=1)
|
191 |
+
)
|
192 |
+
gate, up = gate.reshape(inter_size, hidden_size), up.reshape(
|
193 |
+
inter_size, hidden_size
|
194 |
+
)
|
195 |
+
layer.mlp.gate_proj.load_state_dict({"weight": gate}, strict=True)
|
196 |
+
layer.mlp.up_proj.load_state_dict({"weight": up}, strict=True)
|
197 |
+
layer.mlp.down_proj.load_state_dict(
|
198 |
+
{
|
199 |
+
"weight": merge_row(
|
200 |
+
check_get(
|
201 |
+
transformers, prefix, transformer_layer_name_list["mlp_down"]
|
202 |
+
)
|
203 |
+
)
|
204 |
+
},
|
205 |
+
strict=True,
|
206 |
+
)
|
207 |
+
|
208 |
+
layer.post_attention_layernorm.load_state_dict(
|
209 |
+
{
|
210 |
+
"weight": check_get(
|
211 |
+
transformers,
|
212 |
+
prefix,
|
213 |
+
transformer_layer_name_list["post_attention_norm"],
|
214 |
+
)[0]
|
215 |
+
},
|
216 |
+
strict=True,
|
217 |
+
)
|
218 |
+
|
219 |
+
# The final norm.
|
220 |
+
hf_model.model.norm.load_state_dict(
|
221 |
+
{"weight": transformers[0]["final_norm.weight"]}, strict=True
|
222 |
+
)
|
223 |
+
|
224 |
+
# For LM head, transformers' wants the matrix to weight embeddings.
|
225 |
+
output_layers = get(lms, "output_layer")
|
226 |
+
merged_padded_output_layers = merge_col(output_layers)
|
227 |
+
merged_output_layers = merged_padded_output_layers[: model_config.vocab_size, :]
|
228 |
+
hf_model.lm_head.load_state_dict({"weight": merged_output_layers}, strict=True)
|
229 |
+
|
230 |
+
|
231 |
+
def check_padded_vocab_size(train_args, orig_vocab_size):
|
232 |
+
"""Pad vocab size so it is divisible by model parallel size and
|
233 |
+
still having GPU friendly size."""
|
234 |
+
|
235 |
+
after = orig_vocab_size
|
236 |
+
multiple = (
|
237 |
+
train_args.make_vocab_size_divisible_by * train_args.tensor_model_parallel_size
|
238 |
+
)
|
239 |
+
while (after % multiple) != 0:
|
240 |
+
after += 1
|
241 |
+
assert (
|
242 |
+
train_args.padded_vocab_size == after
|
243 |
+
), "Mismatched vocab size and padded vocab size."
|
244 |
+
|
245 |
+
|
246 |
+
def get_train_args(state_dict):
|
247 |
+
args = state_dict.get("args", None)
|
248 |
+
assert args is not None
|
249 |
+
return args
|
250 |
+
|
251 |
+
|
252 |
+
def get_model_config(train_args, vocab_size):
|
253 |
+
config = LlamaConfig()
|
254 |
+
check_padded_vocab_size(train_args, vocab_size)
|
255 |
+
config.vocab_size = vocab_size
|
256 |
+
# config.vocab_size = train_args.padded_vocab_size
|
257 |
+
config.max_position_embeddings = train_args.max_position_embeddings
|
258 |
+
config.hidden_size = train_args.hidden_size
|
259 |
+
config.num_hidden_layers = train_args.num_layers
|
260 |
+
config.num_attention_heads = train_args.num_attention_heads
|
261 |
+
config.num_key_value_heads = train_args.num_query_groups
|
262 |
+
config.intermediate_size = train_args.ffn_hidden_size
|
263 |
+
if hasattr(train_args, "rope_base"):
|
264 |
+
config.rope_theta = train_args.rope_base
|
265 |
+
config.pad_token_id = 0
|
266 |
+
config.torch_dtype = train_args.params_dtype
|
267 |
+
return config
|
268 |
+
|
269 |
+
|
270 |
+
def load_state_dicts(input_dir):
|
271 |
+
state_dicts = [
|
272 |
+
torch.load(os.path.join(f.path, "model_optim_rng.pt"), map_location="cpu")
|
273 |
+
for f in os.scandir(input_dir)
|
274 |
+
if f.is_dir()
|
275 |
+
]
|
276 |
+
args = get_train_args(state_dicts[0])
|
277 |
+
if args.transformer_pipeline_model_parallel_size == 1:
|
278 |
+
return state_dicts, args
|
279 |
+
|
280 |
+
state_dicts = []
|
281 |
+
tp_size = args.tensor_model_parallel_size
|
282 |
+
pp_size = args.transformer_pipeline_model_parallel_size
|
283 |
+
num_layers_per_pile = args.num_layers // pp_size
|
284 |
+
for tp_index in range(tp_size):
|
285 |
+
model_file = f"{input_dir}/mp_rank_{tp_index:02d}_000/model_optim_rng.pt"
|
286 |
+
print(f"loading {model_file}")
|
287 |
+
state_dict = torch.load(
|
288 |
+
model_file,
|
289 |
+
map_location="cpu",
|
290 |
+
)
|
291 |
+
lm = state_dict["model"]["language_model"]
|
292 |
+
encoder = lm["encoder"]
|
293 |
+
for pp_index in range(1, pp_size):
|
294 |
+
model_file = f"{input_dir}/mp_rank_{tp_index:02d}_{pp_index:03d}/model_optim_rng.pt"
|
295 |
+
this_state_dict = torch.load(
|
296 |
+
model_file,
|
297 |
+
map_location="cpu",
|
298 |
+
)
|
299 |
+
print(f"loading {model_file}")
|
300 |
+
this_lm = this_state_dict["model"]["language_model"]
|
301 |
+
this_encoder = this_lm["encoder"]
|
302 |
+
|
303 |
+
if pp_index == pp_size - 1:
|
304 |
+
lm["output_layer"] = this_lm["output_layer"]
|
305 |
+
encoder["final_norm.weight"] = this_encoder[
|
306 |
+
"final_norm.weight"
|
307 |
+
]
|
308 |
+
|
309 |
+
for layer_index in range(num_layers_per_pile):
|
310 |
+
this_layer_index = layer_index + num_layers_per_pile * pp_index
|
311 |
+
if args.num_attention_heads == args.num_query_groups:
|
312 |
+
encoder = check_assign(
|
313 |
+
encoder,
|
314 |
+
this_layer_index,
|
315 |
+
this_encoder,
|
316 |
+
layer_index,
|
317 |
+
key_list=transformer_layer_name_list["query_key_value"],
|
318 |
+
)
|
319 |
+
else:
|
320 |
+
for key in ["query", "key_value", "query_key_value"]:
|
321 |
+
encoder = check_assign(
|
322 |
+
encoder,
|
323 |
+
this_layer_index,
|
324 |
+
this_encoder,
|
325 |
+
layer_index,
|
326 |
+
key_list=transformer_layer_name_list[key],
|
327 |
+
)
|
328 |
+
for key in transformer_layer_name_list.keys():
|
329 |
+
if key not in ("query_key_value", "query", "key_value"):
|
330 |
+
encoder = check_assign(
|
331 |
+
encoder,
|
332 |
+
this_layer_index,
|
333 |
+
this_encoder,
|
334 |
+
layer_index,
|
335 |
+
key_list=transformer_layer_name_list[key],
|
336 |
+
)
|
337 |
+
state_dicts.append(state_dict)
|
338 |
+
|
339 |
+
return state_dicts, args
|
340 |
+
|
341 |
+
|
342 |
+
def main():
|
343 |
+
parser = argparse.ArgumentParser()
|
344 |
+
parser.add_argument(
|
345 |
+
"--input-dir",
|
346 |
+
type=str,
|
347 |
+
help="Path to the megatron checkpoint dir",
|
348 |
+
)
|
349 |
+
parser.add_argument(
|
350 |
+
"--output-dir",
|
351 |
+
type=str,
|
352 |
+
help="Path to the huggingface checkpoint dir",
|
353 |
+
)
|
354 |
+
parser.add_argument(
|
355 |
+
"--vocab-size",
|
356 |
+
type=int,
|
357 |
+
default=64000,
|
358 |
+
help="unpadded tokenizer vocab size",
|
359 |
+
)
|
360 |
+
args = parser.parse_args()
|
361 |
+
|
362 |
+
print("Load megatron checkpoint")
|
363 |
+
state_dicts, train_args = load_state_dicts(args.input_dir)
|
364 |
+
|
365 |
+
model_config = get_model_config(train_args, args.vocab_size)
|
366 |
+
print(f"Model config: {model_config}", flush=True)
|
367 |
+
|
368 |
+
|
369 |
+
print("Create hf model", flush=True)
|
370 |
+
# with accelerate.init_empty_weights():
|
371 |
+
hf_model = LlamaForCausalLM(model_config)
|
372 |
+
hf_model = hf_model.to(torch.bfloat16)
|
373 |
+
|
374 |
+
print("convert megatron to hf", flush=True)
|
375 |
+
convert_megatron_checkpoint(hf_model, state_dicts, model_config)
|
376 |
+
|
377 |
+
print("save hf model", flush=True)
|
378 |
+
hf_model.save_pretrained(args.output_dir, safe_serialization=False)
|
379 |
+
|
380 |
+
|
381 |
+
if __name__ == "__main__":
|
382 |
+
main()
|
m-a-p.png
ADDED