m-aliabbas1 commited on
Commit
d0fb46b
1 Parent(s): 00cc34d

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,314 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ metrics:
9
+ - accuracy
10
+ widget:
11
+ - text: Please email the information to me.
12
+ - text: Give me a second, please.
13
+ - text: Is it possible to talk to a higher authority?
14
+ - text: Sorry, too busy to chat right now.
15
+ - text: I already own one, thanks.
16
+ pipeline_tag: text-classification
17
+ inference: true
18
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
19
+ model-index:
20
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.9333333333333333
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 25 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:---------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | do_not_qualify | <ul><li>"Your target age group doesn't include me."</li><li>"I'm outside the age range for this."</li><li>"I'm not in the age group you're looking for."</li></ul> |
66
+ | can_you_email | <ul><li>'I prefer email, can you write to me?'</li><li>'Email is more convenient for me, can you use that?'</li><li>'Can you send me the details by email?'</li></ul> |
67
+ | say_again | <ul><li>'Can you repeat that, please?'</li><li>'I missed that, can you say it again?'</li><li>'Could you please repeat what you just said?'</li></ul> |
68
+ | hold_a_sec | <ul><li>'One moment, please hold.'</li><li>'Hang on for a bit, please.'</li><li>'Just a minute, please.'</li></ul> |
69
+ | language_barrier | <ul><li>'English is hard for me, ¿puedo hablar en español?'</li><li>'I struggle with English, ¿puede ser en español?'</li><li>"I'm more comfortable in Spanish, ¿podemos continuar en español?"</li></ul> |
70
+ | decline | <ul><li>'wrong'</li><li>'Never'</li><li>"I don't want this, thank you."</li></ul> |
71
+ | transfer_request | <ul><li>'Can you transfer this call to your superior?'</li><li>'I need to speak with someone in charge.'</li><li>'Can I speak with your manager?'</li></ul> |
72
+ | scam | <ul><li>"I'm skeptical, this doesn't sound right."</li><li>"I'm wary, this feels like a scam."</li><li>"Are you sure this isn't a scam?"</li></ul> |
73
+ | who_are_you | <ul><li>"I would like to know who's calling."</li><li>"Who's calling, please?"</li><li>'Who are you and why are you calling?'</li></ul> |
74
+ | where_did_you_get_my_info | <ul><li>'Can you explain how you got my contact info?'</li><li>"What's the source of my details you have?"</li><li>"I didn't give you my number, where did you get it?"</li></ul> |
75
+ | do_not_call | <ul><li>"Stop calling me, it's annoying!"</li><li>"I don't want to be contacted again."</li><li>"Enough calls, I'm not interested!"</li></ul> |
76
+ | where_are_you_calling_from | <ul><li>'Where are you calling from?'</li><li>'From which city or country are you calling?'</li><li>'Could you inform me of your current location?'</li></ul> |
77
+ | complain_calls | <ul><li>"Too many calls like this, it's irritating."</li><li>"I've had several calls like this, it's annoying."</li><li>"I keep getting these calls, it's too much."</li></ul> |
78
+ | busy | <ul><li>"Right now isn't good, I'm busy with something."</li><li>"I'm swamped at the moment, sorry."</li><li>"I'm busy right now, can't talk."</li></ul> |
79
+ | greetings | <ul><li>'Hi, how can I help you?'</li><li>'Hello, what can I help you with today?'</li><li>'Hello, yes?'</li></ul> |
80
+ | sorry_greeting | <ul><li>"I'm not at my best, what do you need?"</li><li>"Sorry, it's a bad time, I'm sick."</li><li>"Not a great time, I'm dealing with a personal issue."</li></ul> |
81
+ | GreetBack | <ul><li>'Doing well, how about yourself?'</li><li>'Pretty good, what about you?'</li><li>"Not bad, and how's it going on your end?"</li></ul> |
82
+ | calling_about | <ul><li>'Why are you calling me?'</li><li>"What's the matter, why the call?"</li><li>'May I know the reason for your call?'</li></ul> |
83
+ | answering_machine | <ul><li>"Leave a message and I'll get back to you."</li><li>"You're speaking to an answering machine, leave a message."</li><li>"This is an answering machine, I'm not available."</li></ul> |
84
+ | weather | <ul><li>"Sunny skies here, what's it like where you are?"</li><li>"It's a bit cloudy here, is it the same there?"</li><li>"It's warm here, what about where you are?"</li></ul> |
85
+ | are_you_bot | <ul><li>'Is this a bot calling me?'</li><li>'Is this a recorded message or are you real?'</li><li>'Are you a live person or a recording?'</li></ul> |
86
+ | affirmation | <ul><li>'yes'</li><li>"That's true, yes."</li><li>"Precisely, that's right."</li></ul> |
87
+ | not_interested | <ul><li>"This doesn't interest me, sorry."</li><li>"This offer isn't relevant to my interests."</li><li>"Thanks, but this isn't something I need."</li></ul> |
88
+ | already | <ul><li>"I've made this purchase before."</li><li>"This isn't new to me, I have it already."</li><li>"I've been using this for a while now."</li></ul> |
89
+ | abusibve | <ul><li>"This is unacceptable, I won't tolerate this!"</li><li>'I demand you stop this abusive calling!'</li><li>"Stop calling me, it's harassment!"</li></ul> |
90
+
91
+ ## Evaluation
92
+
93
+ ### Metrics
94
+ | Label | Accuracy |
95
+ |:--------|:---------|
96
+ | **all** | 0.9333 |
97
+
98
+ ## Uses
99
+
100
+ ### Direct Use for Inference
101
+
102
+ First install the SetFit library:
103
+
104
+ ```bash
105
+ pip install setfit
106
+ ```
107
+
108
+ Then you can load this model and run inference.
109
+
110
+ ```python
111
+ from setfit import SetFitModel
112
+
113
+ # Download from the 🤗 Hub
114
+ model = SetFitModel.from_pretrained("setfit_model_id")
115
+ # Run inference
116
+ preds = model("Give me a second, please.")
117
+ ```
118
+
119
+ <!--
120
+ ### Downstream Use
121
+
122
+ *List how someone could finetune this model on their own dataset.*
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Set Metrics
146
+ | Training set | Min | Median | Max |
147
+ |:-------------|:----|:-------|:----|
148
+ | Word count | 1 | 6.8375 | 13 |
149
+
150
+ | Label | Training Sample Count |
151
+ |:---------------------------|:----------------------|
152
+ | GreetBack | 9 |
153
+ | abusibve | 9 |
154
+ | affirmation | 10 |
155
+ | already | 10 |
156
+ | answering_machine | 8 |
157
+ | are_you_bot | 8 |
158
+ | busy | 9 |
159
+ | calling_about | 8 |
160
+ | can_you_email | 11 |
161
+ | complain_calls | 11 |
162
+ | decline | 10 |
163
+ | do_not_call | 12 |
164
+ | do_not_qualify | 9 |
165
+ | greetings | 8 |
166
+ | hold_a_sec | 8 |
167
+ | language_barrier | 10 |
168
+ | not_interested | 11 |
169
+ | say_again | 12 |
170
+ | scam | 9 |
171
+ | sorry_greeting | 9 |
172
+ | transfer_request | 8 |
173
+ | weather | 10 |
174
+ | where_are_you_calling_from | 9 |
175
+ | where_did_you_get_my_info | 11 |
176
+ | who_are_you | 11 |
177
+
178
+ ### Training Hyperparameters
179
+ - batch_size: (8, 8)
180
+ - num_epochs: (3, 3)
181
+ - max_steps: -1
182
+ - sampling_strategy: oversampling
183
+ - num_iterations: 20
184
+ - body_learning_rate: (2e-05, 2e-05)
185
+ - head_learning_rate: 2e-05
186
+ - loss: CosineSimilarityLoss
187
+ - distance_metric: cosine_distance
188
+ - margin: 0.25
189
+ - end_to_end: False
190
+ - use_amp: False
191
+ - warmup_proportion: 0.1
192
+ - seed: 42
193
+ - eval_max_steps: -1
194
+ - load_best_model_at_end: False
195
+
196
+ ### Training Results
197
+ | Epoch | Step | Training Loss | Validation Loss |
198
+ |:------:|:----:|:-------------:|:---------------:|
199
+ | 0.0008 | 1 | 0.1054 | - |
200
+ | 0.0417 | 50 | 0.1111 | - |
201
+ | 0.0833 | 100 | 0.0798 | - |
202
+ | 0.125 | 150 | 0.0826 | - |
203
+ | 0.1667 | 200 | 0.0308 | - |
204
+ | 0.2083 | 250 | 0.0324 | - |
205
+ | 0.25 | 300 | 0.0607 | - |
206
+ | 0.2917 | 350 | 0.0042 | - |
207
+ | 0.3333 | 400 | 0.0116 | - |
208
+ | 0.375 | 450 | 0.0049 | - |
209
+ | 0.4167 | 500 | 0.0154 | - |
210
+ | 0.4583 | 550 | 0.0158 | - |
211
+ | 0.5 | 600 | 0.0036 | - |
212
+ | 0.5417 | 650 | 0.001 | - |
213
+ | 0.5833 | 700 | 0.0015 | - |
214
+ | 0.625 | 750 | 0.0012 | - |
215
+ | 0.6667 | 800 | 0.0009 | - |
216
+ | 0.7083 | 850 | 0.0008 | - |
217
+ | 0.75 | 900 | 0.0008 | - |
218
+ | 0.7917 | 950 | 0.0014 | - |
219
+ | 0.8333 | 1000 | 0.0005 | - |
220
+ | 0.875 | 1050 | 0.0027 | - |
221
+ | 0.9167 | 1100 | 0.0007 | - |
222
+ | 0.9583 | 1150 | 0.0008 | - |
223
+ | 1.0 | 1200 | 0.0012 | - |
224
+ | 1.0417 | 1250 | 0.0012 | - |
225
+ | 1.0833 | 1300 | 0.0006 | - |
226
+ | 1.125 | 1350 | 0.0005 | - |
227
+ | 1.1667 | 1400 | 0.0003 | - |
228
+ | 1.2083 | 1450 | 0.0012 | - |
229
+ | 1.25 | 1500 | 0.0006 | - |
230
+ | 1.2917 | 1550 | 0.0008 | - |
231
+ | 1.3333 | 1600 | 0.0008 | - |
232
+ | 1.375 | 1650 | 0.0003 | - |
233
+ | 1.4167 | 1700 | 0.0004 | - |
234
+ | 1.4583 | 1750 | 0.0005 | - |
235
+ | 1.5 | 1800 | 0.0004 | - |
236
+ | 1.5417 | 1850 | 0.0004 | - |
237
+ | 1.5833 | 1900 | 0.0008 | - |
238
+ | 1.625 | 1950 | 0.0004 | - |
239
+ | 1.6667 | 2000 | 0.0004 | - |
240
+ | 1.7083 | 2050 | 0.0021 | - |
241
+ | 1.75 | 2100 | 0.0004 | - |
242
+ | 1.7917 | 2150 | 0.0002 | - |
243
+ | 1.8333 | 2200 | 0.0006 | - |
244
+ | 1.875 | 2250 | 0.0004 | - |
245
+ | 1.9167 | 2300 | 0.0006 | - |
246
+ | 1.9583 | 2350 | 0.0006 | - |
247
+ | 2.0 | 2400 | 0.0003 | - |
248
+ | 2.0417 | 2450 | 0.0002 | - |
249
+ | 2.0833 | 2500 | 0.0002 | - |
250
+ | 2.125 | 2550 | 0.0003 | - |
251
+ | 2.1667 | 2600 | 0.0004 | - |
252
+ | 2.2083 | 2650 | 0.0004 | - |
253
+ | 2.25 | 2700 | 0.0005 | - |
254
+ | 2.2917 | 2750 | 0.0005 | - |
255
+ | 2.3333 | 2800 | 0.0005 | - |
256
+ | 2.375 | 2850 | 0.0007 | - |
257
+ | 2.4167 | 2900 | 0.0002 | - |
258
+ | 2.4583 | 2950 | 0.0003 | - |
259
+ | 2.5 | 3000 | 0.0004 | - |
260
+ | 2.5417 | 3050 | 0.0002 | - |
261
+ | 2.5833 | 3100 | 0.0004 | - |
262
+ | 2.625 | 3150 | 0.0002 | - |
263
+ | 2.6667 | 3200 | 0.0002 | - |
264
+ | 2.7083 | 3250 | 0.0003 | - |
265
+ | 2.75 | 3300 | 0.0002 | - |
266
+ | 2.7917 | 3350 | 0.0002 | - |
267
+ | 2.8333 | 3400 | 0.0003 | - |
268
+ | 2.875 | 3450 | 0.0002 | - |
269
+ | 2.9167 | 3500 | 0.0002 | - |
270
+ | 2.9583 | 3550 | 0.0002 | - |
271
+ | 3.0 | 3600 | 0.0002 | - |
272
+
273
+ ### Framework Versions
274
+ - Python: 3.10.13
275
+ - SetFit: 1.0.1
276
+ - Sentence Transformers: 2.2.2
277
+ - Transformers: 4.35.0
278
+ - PyTorch: 2.1.0
279
+ - Datasets: 2.14.6
280
+ - Tokenizers: 0.14.1
281
+
282
+ ## Citation
283
+
284
+ ### BibTeX
285
+ ```bibtex
286
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
287
+ doi = {10.48550/ARXIV.2209.11055},
288
+ url = {https://arxiv.org/abs/2209.11055},
289
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
290
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
291
+ title = {Efficient Few-Shot Learning Without Prompts},
292
+ publisher = {arXiv},
293
+ year = {2022},
294
+ copyright = {Creative Commons Attribution 4.0 International}
295
+ }
296
+ ```
297
+
298
+ <!--
299
+ ## Glossary
300
+
301
+ *Clearly define terms in order to be accessible across audiences.*
302
+ -->
303
+
304
+ <!--
305
+ ## Model Card Authors
306
+
307
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
308
+ -->
309
+
310
+ <!--
311
+ ## Model Card Contact
312
+
313
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
314
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/Users/ali/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": null
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:165f745904b00444fced2c9150112be17fea45dc4c6392fe045a5e4ae899b68b
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cd3e6bf68875127458edd686708bba74978d7465eded4578a72d566c7d534870
3
+ size 157247
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff