m-aliabbas1 commited on
Commit
16cc475
1 Parent(s): 0cd5630

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,805 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
9
+ metrics:
10
+ - accuracy
11
+ widget:
12
+ - text: i'm busy with a project can we talk later
13
+ - text: are you situated in india by any chance
14
+ - text: '35'
15
+ - text: at the tone please record your message
16
+ - text: i told you not to keep going
17
+ pipeline_tag: text-classification
18
+ inference: true
19
+ ---
20
+
21
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
22
+
23
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
24
+
25
+ The model has been trained using an efficient few-shot learning technique that involves:
26
+
27
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
28
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
29
+
30
+ ## Model Details
31
+
32
+ ### Model Description
33
+ - **Model Type:** SetFit
34
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
35
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
36
+ - **Maximum Sequence Length:** 512 tokens
37
+ - **Number of Classes:** 29 classes
38
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
39
+ <!-- - **Language:** Unknown -->
40
+ <!-- - **License:** Unknown -->
41
+
42
+ ### Model Sources
43
+
44
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
45
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
46
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
47
+
48
+ ### Model Labels
49
+ | Label | Examples |
50
+ |:---------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
51
+ | decline | <ul><li>'no i am not registered with medicare for part a or part b'</li><li>"no i'm not in"</li><li>"thank you very much but i don't think i will need that"</li></ul> |
52
+ | provide_age | <ul><li>'my age is 36'</li><li>"i'm 62 years old"</li><li>'49'</li></ul> |
53
+ | complain_calls | <ul><li>'stop disrupting my life with these calls'</li><li>'your constant calls are causing me distress'</li><li>'same as i was last time you called'</li></ul> |
54
+ | already | <ul><li>'i already charged it should be good to go'</li><li>'already took care of it no worries'</li><li>'got the app installed already'</li></ul> |
55
+ | Not_Interested | <ul><li>"oh but i'm not interested"</li><li>"no i don't want to talk i don't want to talk"</li><li>"i'm not interested in making any decisions right now"</li></ul> |
56
+ | DNC | <ul><li>'i asked you to stop calling me'</li><li>"i've had enough no more calls"</li><li>'would you take me off your list please'</li></ul> |
57
+ | where_get_number | <ul><li>"i never provided my number to you what's going on"</li><li>'who is responsible for sharing my number with you'</li><li>"what's the source of my contact details in your database"</li></ul> |
58
+ | language_barrier | <ul><li>"speak espanol i'm lost"</li><li>"sorry i'm not speaking english"</li><li>'no english'</li></ul> |
59
+ | answering_machine | <ul><li>'this is the voicemail system record your message after the beep'</li><li>'this is the voicemail speak your message after the beep'</li><li>'you have reached a law source number that is no longer in service please check the number you have dialed'</li></ul> |
60
+ | BUSY | <ul><li>"i'm engaged in a conference call can we talk later"</li><li>"right now i'm not able to talk right now bye"</li><li>"i don't have time"</li></ul> |
61
+ | where_are_you_calling_from | <ul><li>'is the philippines where your organization is based'</li><li>'where can i find your headquarters'</li><li>"can you confirm if you're in canada"</li></ul> |
62
+ | scam | <ul><li>"that's none of your business"</li><li>"i don't think i'm going to say it"</li><li>'scammers are clever what measures do you have to counteract them'</li></ul> |
63
+ | affirmation | <ul><li>'yeah you are'</li><li>"for sure that's correct"</li><li>'i have secured both medicare part a and part b coverage'</li></ul> |
64
+ | transfer_request | <ul><li>'i want to discuss this with someone higher up'</li><li>'transfer my call to your superior please'</li><li>'i require assistance from your manager immediately'</li></ul> |
65
+ | abusive | <ul><li>'what the fuck you calling me for'</li><li>'and you rather the fucking guy you fucked up'</li><li>'crikey'</li></ul> |
66
+ | calling_about | <ul><li>'why are you getting in touch with me'</li><li>"what's the main subject of discussion in this call"</li><li>"what's the rationale behind this call"</li></ul> |
67
+ | GreetBack | <ul><li>"what's crackin' how you been"</li><li>"i'm doing good how are you doing"</li><li>"hi i'm fine how's your day been so far"</li></ul> |
68
+ | say_again | <ul><li>'can you please say that again'</li><li>'sorry i need you to repeat that'</li><li>'what was that can you repeat it'</li></ul> |
69
+ | sorry_greeting | <ul><li>"to be honest i'm feeling a bit down"</li><li>"i'm not really in a great mood"</li><li>"i'm not feeling very joyful right now"</li></ul> |
70
+ | not_decision_maker | <ul><li>'decisions like this require a different approach'</li><li>"decisions of this nature aren't mine to make"</li><li>'decisions in this regard are not mine to make'</li></ul> |
71
+ | hold_a_sec | <ul><li>'please stay on the line while i check'</li><li>'i need to consult with my colleague hold on'</li><li>"i'll be right back don't disconnect"</li></ul> |
72
+ | interested | <ul><li>'your topic has piqued my curiosity do continue'</li><li>'go'</li><li>"i'm all ears talk"</li></ul> |
73
+ | greetings | <ul><li>"i'm doing great thank you"</li><li>"hi there hope you're having a splendid day"</li><li>'rest well and recharge good night'</li></ul> |
74
+ | who_are_you | <ul><li>'start by telling me who you are'</li><li>'can you tell me your given name'</li><li>"what's your name and position"</li></ul> |
75
+ | can_you_email | <ul><li>'can you send an email with the instructions'</li><li>'can you email me the contract terms'</li><li>'is email the preferred way to receive updates'</li></ul> |
76
+ | DNQ | <ul><li>"i'm not the right fit for this"</li><li>"i'm not the right person for this"</li><li>"it's not the right fit for me"</li></ul> |
77
+ | are_you_bot | <ul><li>'is this interaction with an automated system'</li><li>'is this interaction with a human or a bot'</li><li>'is this interaction with a robot or human'</li></ul> |
78
+ | other | <ul><li>'i love exploring the different neighborhoods of our city each has its own charm'</li><li>'no i have to buy a car'</li><li>'i was just reading an article about the latest technological innovations'</li></ul> |
79
+ | weather | <ul><li>"how's the climate today"</li><li>'tell me what the weather is like'</li><li>"how's the weather in the morning"</li></ul> |
80
+
81
+ ## Uses
82
+
83
+ ### Direct Use for Inference
84
+
85
+ First install the SetFit library:
86
+
87
+ ```bash
88
+ pip install setfit
89
+ ```
90
+
91
+ Then you can load this model and run inference.
92
+
93
+ ```python
94
+ from setfit import SetFitModel
95
+
96
+ # Download from the 🤗 Hub
97
+ model = SetFitModel.from_pretrained("m-aliabbas1/medicare_idrak_ab")
98
+ # Run inference
99
+ preds = model("35")
100
+ ```
101
+
102
+ <!--
103
+ ### Downstream Use
104
+
105
+ *List how someone could finetune this model on their own dataset.*
106
+ -->
107
+
108
+ <!--
109
+ ### Out-of-Scope Use
110
+
111
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
112
+ -->
113
+
114
+ <!--
115
+ ## Bias, Risks and Limitations
116
+
117
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
118
+ -->
119
+
120
+ <!--
121
+ ### Recommendations
122
+
123
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
124
+ -->
125
+
126
+ ## Training Details
127
+
128
+ ### Training Set Metrics
129
+ | Training set | Min | Median | Max |
130
+ |:-------------|:----|:-------|:----|
131
+ | Word count | 1 | 7.3794 | 109 |
132
+
133
+ | Label | Training Sample Count |
134
+ |:---------------------------|:----------------------|
135
+ | BUSY | 528 |
136
+ | DNC | 585 |
137
+ | DNQ | 96 |
138
+ | GreetBack | 224 |
139
+ | Not_Interested | 497 |
140
+ | abusive | 145 |
141
+ | affirmation | 306 |
142
+ | already | 70 |
143
+ | answering_machine | 316 |
144
+ | are_you_bot | 205 |
145
+ | calling_about | 147 |
146
+ | can_you_email | 116 |
147
+ | complain_calls | 65 |
148
+ | decline | 455 |
149
+ | greetings | 82 |
150
+ | hold_a_sec | 79 |
151
+ | interested | 94 |
152
+ | language_barrier | 163 |
153
+ | not_decision_maker | 83 |
154
+ | other | 56 |
155
+ | provide_age | 355 |
156
+ | say_again | 83 |
157
+ | scam | 110 |
158
+ | sorry_greeting | 102 |
159
+ | transfer_request | 73 |
160
+ | weather | 129 |
161
+ | where_are_you_calling_from | 250 |
162
+ | where_get_number | 127 |
163
+ | who_are_you | 221 |
164
+
165
+ ### Training Hyperparameters
166
+ - batch_size: (16, 16)
167
+ - num_epochs: (1, 1)
168
+ - max_steps: -1
169
+ - sampling_strategy: oversampling
170
+ - num_iterations: 40
171
+ - body_learning_rate: (2e-05, 2e-05)
172
+ - head_learning_rate: 2e-05
173
+ - loss: CosineSimilarityLoss
174
+ - distance_metric: cosine_distance
175
+ - margin: 0.25
176
+ - end_to_end: False
177
+ - use_amp: False
178
+ - warmup_proportion: 0.1
179
+ - seed: 42
180
+ - eval_max_steps: -1
181
+ - load_best_model_at_end: False
182
+
183
+ ### Training Results
184
+ | Epoch | Step | Training Loss | Validation Loss |
185
+ |:------:|:-----:|:-------------:|:---------------:|
186
+ | 0.0000 | 1 | 0.2366 | - |
187
+ | 0.0017 | 50 | 0.1785 | - |
188
+ | 0.0035 | 100 | 0.1604 | - |
189
+ | 0.0052 | 150 | 0.1877 | - |
190
+ | 0.0069 | 200 | 0.1209 | - |
191
+ | 0.0087 | 250 | 0.161 | - |
192
+ | 0.0104 | 300 | 0.1261 | - |
193
+ | 0.0121 | 350 | 0.153 | - |
194
+ | 0.0139 | 400 | 0.1333 | - |
195
+ | 0.0156 | 450 | 0.0675 | - |
196
+ | 0.0174 | 500 | 0.0623 | - |
197
+ | 0.0191 | 550 | 0.1324 | - |
198
+ | 0.0208 | 600 | 0.0481 | - |
199
+ | 0.0226 | 650 | 0.0894 | - |
200
+ | 0.0243 | 700 | 0.0484 | - |
201
+ | 0.0260 | 750 | 0.0683 | - |
202
+ | 0.0278 | 800 | 0.1025 | - |
203
+ | 0.0295 | 850 | 0.028 | - |
204
+ | 0.0312 | 900 | 0.0218 | - |
205
+ | 0.0330 | 950 | 0.0078 | - |
206
+ | 0.0347 | 1000 | 0.0682 | - |
207
+ | 0.0364 | 1050 | 0.0094 | - |
208
+ | 0.0382 | 1100 | 0.0836 | - |
209
+ | 0.0399 | 1150 | 0.0858 | - |
210
+ | 0.0417 | 1200 | 0.0115 | - |
211
+ | 0.0434 | 1250 | 0.0738 | - |
212
+ | 0.0451 | 1300 | 0.009 | - |
213
+ | 0.0469 | 1350 | 0.044 | - |
214
+ | 0.0486 | 1400 | 0.059 | - |
215
+ | 0.0503 | 1450 | 0.0271 | - |
216
+ | 0.0521 | 1500 | 0.1249 | - |
217
+ | 0.0538 | 1550 | 0.0032 | - |
218
+ | 0.0555 | 1600 | 0.0897 | - |
219
+ | 0.0573 | 1650 | 0.0758 | - |
220
+ | 0.0590 | 1700 | 0.0573 | - |
221
+ | 0.0607 | 1750 | 0.0063 | - |
222
+ | 0.0625 | 1800 | 0.011 | - |
223
+ | 0.0642 | 1850 | 0.005 | - |
224
+ | 0.0659 | 1900 | 0.0545 | - |
225
+ | 0.0677 | 1950 | 0.0216 | - |
226
+ | 0.0694 | 2000 | 0.0059 | - |
227
+ | 0.0712 | 2050 | 0.0043 | - |
228
+ | 0.0729 | 2100 | 0.0109 | - |
229
+ | 0.0746 | 2150 | 0.0049 | - |
230
+ | 0.0764 | 2200 | 0.012 | - |
231
+ | 0.0781 | 2250 | 0.0012 | - |
232
+ | 0.0798 | 2300 | 0.0284 | - |
233
+ | 0.0816 | 2350 | 0.0089 | - |
234
+ | 0.0833 | 2400 | 0.0023 | - |
235
+ | 0.0850 | 2450 | 0.0234 | - |
236
+ | 0.0868 | 2500 | 0.0463 | - |
237
+ | 0.0885 | 2550 | 0.0647 | - |
238
+ | 0.0902 | 2600 | 0.0578 | - |
239
+ | 0.0920 | 2650 | 0.0119 | - |
240
+ | 0.0937 | 2700 | 0.0562 | - |
241
+ | 0.0955 | 2750 | 0.0009 | - |
242
+ | 0.0972 | 2800 | 0.0573 | - |
243
+ | 0.0989 | 2850 | 0.0042 | - |
244
+ | 0.1007 | 2900 | 0.0028 | - |
245
+ | 0.1024 | 2950 | 0.0048 | - |
246
+ | 0.1041 | 3000 | 0.1124 | - |
247
+ | 0.1059 | 3050 | 0.0022 | - |
248
+ | 0.1076 | 3100 | 0.0033 | - |
249
+ | 0.1093 | 3150 | 0.0029 | - |
250
+ | 0.1111 | 3200 | 0.0281 | - |
251
+ | 0.1128 | 3250 | 0.0474 | - |
252
+ | 0.1145 | 3300 | 0.0059 | - |
253
+ | 0.1163 | 3350 | 0.0198 | - |
254
+ | 0.1180 | 3400 | 0.128 | - |
255
+ | 0.1198 | 3450 | 0.0092 | - |
256
+ | 0.1215 | 3500 | 0.0023 | - |
257
+ | 0.1232 | 3550 | 0.044 | - |
258
+ | 0.1250 | 3600 | 0.0333 | - |
259
+ | 0.1267 | 3650 | 0.0014 | - |
260
+ | 0.1284 | 3700 | 0.0019 | - |
261
+ | 0.1302 | 3750 | 0.0514 | - |
262
+ | 0.1319 | 3800 | 0.0004 | - |
263
+ | 0.1336 | 3850 | 0.0022 | - |
264
+ | 0.1354 | 3900 | 0.0012 | - |
265
+ | 0.1371 | 3950 | 0.0598 | - |
266
+ | 0.1388 | 4000 | 0.0013 | - |
267
+ | 0.1406 | 4050 | 0.0597 | - |
268
+ | 0.1423 | 4100 | 0.0004 | - |
269
+ | 0.1440 | 4150 | 0.0038 | - |
270
+ | 0.1458 | 4200 | 0.0523 | - |
271
+ | 0.1475 | 4250 | 0.0481 | - |
272
+ | 0.1493 | 4300 | 0.1062 | - |
273
+ | 0.1510 | 4350 | 0.0033 | - |
274
+ | 0.1527 | 4400 | 0.0007 | - |
275
+ | 0.1545 | 4450 | 0.0002 | - |
276
+ | 0.1562 | 4500 | 0.0009 | - |
277
+ | 0.1579 | 4550 | 0.0021 | - |
278
+ | 0.1597 | 4600 | 0.0013 | - |
279
+ | 0.1614 | 4650 | 0.0012 | - |
280
+ | 0.1631 | 4700 | 0.0012 | - |
281
+ | 0.1649 | 4750 | 0.0016 | - |
282
+ | 0.1666 | 4800 | 0.0002 | - |
283
+ | 0.1683 | 4850 | 0.0005 | - |
284
+ | 0.1701 | 4900 | 0.0039 | - |
285
+ | 0.1718 | 4950 | 0.0013 | - |
286
+ | 0.1736 | 5000 | 0.0022 | - |
287
+ | 0.1753 | 5050 | 0.0006 | - |
288
+ | 0.1770 | 5100 | 0.002 | - |
289
+ | 0.1788 | 5150 | 0.0004 | - |
290
+ | 0.1805 | 5200 | 0.0009 | - |
291
+ | 0.1822 | 5250 | 0.0004 | - |
292
+ | 0.1840 | 5300 | 0.0006 | - |
293
+ | 0.1857 | 5350 | 0.0107 | - |
294
+ | 0.1874 | 5400 | 0.0002 | - |
295
+ | 0.1892 | 5450 | 0.0006 | - |
296
+ | 0.1909 | 5500 | 0.0017 | - |
297
+ | 0.1926 | 5550 | 0.0049 | - |
298
+ | 0.1944 | 5600 | 0.0006 | - |
299
+ | 0.1961 | 5650 | 0.0138 | - |
300
+ | 0.1978 | 5700 | 0.011 | - |
301
+ | 0.1996 | 5750 | 0.0042 | - |
302
+ | 0.2013 | 5800 | 0.0017 | - |
303
+ | 0.2031 | 5850 | 0.0011 | - |
304
+ | 0.2048 | 5900 | 0.0103 | - |
305
+ | 0.2065 | 5950 | 0.0008 | - |
306
+ | 0.2083 | 6000 | 0.0615 | - |
307
+ | 0.2100 | 6050 | 0.0539 | - |
308
+ | 0.2117 | 6100 | 0.0016 | - |
309
+ | 0.2135 | 6150 | 0.0005 | - |
310
+ | 0.2152 | 6200 | 0.0004 | - |
311
+ | 0.2169 | 6250 | 0.0296 | - |
312
+ | 0.2187 | 6300 | 0.0003 | - |
313
+ | 0.2204 | 6350 | 0.0023 | - |
314
+ | 0.2221 | 6400 | 0.0306 | - |
315
+ | 0.2239 | 6450 | 0.0496 | - |
316
+ | 0.2256 | 6500 | 0.0433 | - |
317
+ | 0.2274 | 6550 | 0.0005 | - |
318
+ | 0.2291 | 6600 | 0.0109 | - |
319
+ | 0.2308 | 6650 | 0.0354 | - |
320
+ | 0.2326 | 6700 | 0.0007 | - |
321
+ | 0.2343 | 6750 | 0.0003 | - |
322
+ | 0.2360 | 6800 | 0.0006 | - |
323
+ | 0.2378 | 6850 | 0.0002 | - |
324
+ | 0.2395 | 6900 | 0.0014 | - |
325
+ | 0.2412 | 6950 | 0.0005 | - |
326
+ | 0.2430 | 7000 | 0.0002 | - |
327
+ | 0.2447 | 7050 | 0.0394 | - |
328
+ | 0.2464 | 7100 | 0.0006 | - |
329
+ | 0.2482 | 7150 | 0.0005 | - |
330
+ | 0.2499 | 7200 | 0.0002 | - |
331
+ | 0.2516 | 7250 | 0.0017 | - |
332
+ | 0.2534 | 7300 | 0.0004 | - |
333
+ | 0.2551 | 7350 | 0.0018 | - |
334
+ | 0.2569 | 7400 | 0.0184 | - |
335
+ | 0.2586 | 7450 | 0.0003 | - |
336
+ | 0.2603 | 7500 | 0.0515 | - |
337
+ | 0.2621 | 7550 | 0.0003 | - |
338
+ | 0.2638 | 7600 | 0.0013 | - |
339
+ | 0.2655 | 7650 | 0.0609 | - |
340
+ | 0.2673 | 7700 | 0.0017 | - |
341
+ | 0.2690 | 7750 | 0.0003 | - |
342
+ | 0.2707 | 7800 | 0.0011 | - |
343
+ | 0.2725 | 7850 | 0.0016 | - |
344
+ | 0.2742 | 7900 | 0.003 | - |
345
+ | 0.2759 | 7950 | 0.1212 | - |
346
+ | 0.2777 | 8000 | 0.0001 | - |
347
+ | 0.2794 | 8050 | 0.0004 | - |
348
+ | 0.2812 | 8100 | 0.0003 | - |
349
+ | 0.2829 | 8150 | 0.0608 | - |
350
+ | 0.2846 | 8200 | 0.0002 | - |
351
+ | 0.2864 | 8250 | 0.0003 | - |
352
+ | 0.2881 | 8300 | 0.0022 | - |
353
+ | 0.2898 | 8350 | 0.0052 | - |
354
+ | 0.2916 | 8400 | 0.0003 | - |
355
+ | 0.2933 | 8450 | 0.0001 | - |
356
+ | 0.2950 | 8500 | 0.0007 | - |
357
+ | 0.2968 | 8550 | 0.0336 | - |
358
+ | 0.2985 | 8600 | 0.0071 | - |
359
+ | 0.3002 | 8650 | 0.0002 | - |
360
+ | 0.3020 | 8700 | 0.0002 | - |
361
+ | 0.3037 | 8750 | 0.0107 | - |
362
+ | 0.3054 | 8800 | 0.0006 | - |
363
+ | 0.3072 | 8850 | 0.002 | - |
364
+ | 0.3089 | 8900 | 0.001 | - |
365
+ | 0.3107 | 8950 | 0.0002 | - |
366
+ | 0.3124 | 9000 | 0.0002 | - |
367
+ | 0.3141 | 9050 | 0.0021 | - |
368
+ | 0.3159 | 9100 | 0.0545 | - |
369
+ | 0.3176 | 9150 | 0.0007 | - |
370
+ | 0.3193 | 9200 | 0.0152 | - |
371
+ | 0.3211 | 9250 | 0.0003 | - |
372
+ | 0.3228 | 9300 | 0.0005 | - |
373
+ | 0.3245 | 9350 | 0.053 | - |
374
+ | 0.3263 | 9400 | 0.0031 | - |
375
+ | 0.3280 | 9450 | 0.0002 | - |
376
+ | 0.3297 | 9500 | 0.0002 | - |
377
+ | 0.3315 | 9550 | 0.0002 | - |
378
+ | 0.3332 | 9600 | 0.0009 | - |
379
+ | 0.3350 | 9650 | 0.0023 | - |
380
+ | 0.3367 | 9700 | 0.0011 | - |
381
+ | 0.3384 | 9750 | 0.0003 | - |
382
+ | 0.3402 | 9800 | 0.0003 | - |
383
+ | 0.3419 | 9850 | 0.0005 | - |
384
+ | 0.3436 | 9900 | 0.0004 | - |
385
+ | 0.3454 | 9950 | 0.0028 | - |
386
+ | 0.3471 | 10000 | 0.0016 | - |
387
+ | 0.3488 | 10050 | 0.0008 | - |
388
+ | 0.3506 | 10100 | 0.001 | - |
389
+ | 0.3523 | 10150 | 0.0005 | - |
390
+ | 0.3540 | 10200 | 0.0002 | - |
391
+ | 0.3558 | 10250 | 0.0002 | - |
392
+ | 0.3575 | 10300 | 0.0003 | - |
393
+ | 0.3593 | 10350 | 0.0003 | - |
394
+ | 0.3610 | 10400 | 0.0009 | - |
395
+ | 0.3627 | 10450 | 0.0001 | - |
396
+ | 0.3645 | 10500 | 0.0001 | - |
397
+ | 0.3662 | 10550 | 0.0002 | - |
398
+ | 0.3679 | 10600 | 0.0003 | - |
399
+ | 0.3697 | 10650 | 0.0002 | - |
400
+ | 0.3714 | 10700 | 0.0006 | - |
401
+ | 0.3731 | 10750 | 0.0042 | - |
402
+ | 0.3749 | 10800 | 0.0005 | - |
403
+ | 0.3766 | 10850 | 0.0009 | - |
404
+ | 0.3783 | 10900 | 0.0604 | - |
405
+ | 0.3801 | 10950 | 0.0002 | - |
406
+ | 0.3818 | 11000 | 0.0013 | - |
407
+ | 0.3835 | 11050 | 0.0001 | - |
408
+ | 0.3853 | 11100 | 0.0005 | - |
409
+ | 0.3870 | 11150 | 0.0007 | - |
410
+ | 0.3888 | 11200 | 0.0002 | - |
411
+ | 0.3905 | 11250 | 0.0001 | - |
412
+ | 0.3922 | 11300 | 0.0006 | - |
413
+ | 0.3940 | 11350 | 0.0593 | - |
414
+ | 0.3957 | 11400 | 0.0007 | - |
415
+ | 0.3974 | 11450 | 0.0001 | - |
416
+ | 0.3992 | 11500 | 0.0003 | - |
417
+ | 0.4009 | 11550 | 0.0647 | - |
418
+ | 0.4026 | 11600 | 0.0001 | - |
419
+ | 0.4044 | 11650 | 0.0001 | - |
420
+ | 0.4061 | 11700 | 0.0001 | - |
421
+ | 0.4078 | 11750 | 0.0003 | - |
422
+ | 0.4096 | 11800 | 0.0002 | - |
423
+ | 0.4113 | 11850 | 0.0128 | - |
424
+ | 0.4131 | 11900 | 0.0015 | - |
425
+ | 0.4148 | 11950 | 0.0002 | - |
426
+ | 0.4165 | 12000 | 0.0004 | - |
427
+ | 0.4183 | 12050 | 0.0003 | - |
428
+ | 0.4200 | 12100 | 0.0001 | - |
429
+ | 0.4217 | 12150 | 0.0003 | - |
430
+ | 0.4235 | 12200 | 0.0006 | - |
431
+ | 0.4252 | 12250 | 0.0205 | - |
432
+ | 0.4269 | 12300 | 0.0004 | - |
433
+ | 0.4287 | 12350 | 0.0002 | - |
434
+ | 0.4304 | 12400 | 0.0001 | - |
435
+ | 0.4321 | 12450 | 0.0002 | - |
436
+ | 0.4339 | 12500 | 0.0025 | - |
437
+ | 0.4356 | 12550 | 0.0002 | - |
438
+ | 0.4373 | 12600 | 0.0002 | - |
439
+ | 0.4391 | 12650 | 0.0102 | - |
440
+ | 0.4408 | 12700 | 0.0001 | - |
441
+ | 0.4426 | 12750 | 0.0002 | - |
442
+ | 0.4443 | 12800 | 0.0003 | - |
443
+ | 0.4460 | 12850 | 0.0002 | - |
444
+ | 0.4478 | 12900 | 0.0003 | - |
445
+ | 0.4495 | 12950 | 0.0003 | - |
446
+ | 0.4512 | 13000 | 0.0007 | - |
447
+ | 0.4530 | 13050 | 0.0001 | - |
448
+ | 0.4547 | 13100 | 0.0002 | - |
449
+ | 0.4564 | 13150 | 0.0002 | - |
450
+ | 0.4582 | 13200 | 0.0004 | - |
451
+ | 0.4599 | 13250 | 0.0002 | - |
452
+ | 0.4616 | 13300 | 0.0001 | - |
453
+ | 0.4634 | 13350 | 0.0001 | - |
454
+ | 0.4651 | 13400 | 0.0001 | - |
455
+ | 0.4669 | 13450 | 0.0002 | - |
456
+ | 0.4686 | 13500 | 0.0007 | - |
457
+ | 0.4703 | 13550 | 0.0023 | - |
458
+ | 0.4721 | 13600 | 0.0004 | - |
459
+ | 0.4738 | 13650 | 0.0001 | - |
460
+ | 0.4755 | 13700 | 0.0002 | - |
461
+ | 0.4773 | 13750 | 0.0001 | - |
462
+ | 0.4790 | 13800 | 0.0001 | - |
463
+ | 0.4807 | 13850 | 0.0002 | - |
464
+ | 0.4825 | 13900 | 0.0003 | - |
465
+ | 0.4842 | 13950 | 0.027 | - |
466
+ | 0.4859 | 14000 | 0.0002 | - |
467
+ | 0.4877 | 14050 | 0.0001 | - |
468
+ | 0.4894 | 14100 | 0.0002 | - |
469
+ | 0.4911 | 14150 | 0.0003 | - |
470
+ | 0.4929 | 14200 | 0.0001 | - |
471
+ | 0.4946 | 14250 | 0.0001 | - |
472
+ | 0.4964 | 14300 | 0.0002 | - |
473
+ | 0.4981 | 14350 | 0.0001 | - |
474
+ | 0.4998 | 14400 | 0.0002 | - |
475
+ | 0.5016 | 14450 | 0.0004 | - |
476
+ | 0.5033 | 14500 | 0.0001 | - |
477
+ | 0.5050 | 14550 | 0.0085 | - |
478
+ | 0.5068 | 14600 | 0.0008 | - |
479
+ | 0.5085 | 14650 | 0.0001 | - |
480
+ | 0.5102 | 14700 | 0.0001 | - |
481
+ | 0.5120 | 14750 | 0.0001 | - |
482
+ | 0.5137 | 14800 | 0.044 | - |
483
+ | 0.5154 | 14850 | 0.0001 | - |
484
+ | 0.5172 | 14900 | 0.0001 | - |
485
+ | 0.5189 | 14950 | 0.0001 | - |
486
+ | 0.5207 | 15000 | 0.0002 | - |
487
+ | 0.5224 | 15050 | 0.0001 | - |
488
+ | 0.5241 | 15100 | 0.0001 | - |
489
+ | 0.5259 | 15150 | 0.0003 | - |
490
+ | 0.5276 | 15200 | 0.003 | - |
491
+ | 0.5293 | 15250 | 0.0027 | - |
492
+ | 0.5311 | 15300 | 0.0001 | - |
493
+ | 0.5328 | 15350 | 0.0003 | - |
494
+ | 0.5345 | 15400 | 0.0003 | - |
495
+ | 0.5363 | 15450 | 0.0002 | - |
496
+ | 0.5380 | 15500 | 0.0004 | - |
497
+ | 0.5397 | 15550 | 0.0002 | - |
498
+ | 0.5415 | 15600 | 0.0001 | - |
499
+ | 0.5432 | 15650 | 0.0001 | - |
500
+ | 0.5449 | 15700 | 0.0002 | - |
501
+ | 0.5467 | 15750 | 0.0108 | - |
502
+ | 0.5484 | 15800 | 0.0001 | - |
503
+ | 0.5502 | 15850 | 0.0002 | - |
504
+ | 0.5519 | 15900 | 0.0001 | - |
505
+ | 0.5536 | 15950 | 0.0014 | - |
506
+ | 0.5554 | 16000 | 0.0001 | - |
507
+ | 0.5571 | 16050 | 0.0003 | - |
508
+ | 0.5588 | 16100 | 0.0008 | - |
509
+ | 0.5606 | 16150 | 0.0333 | - |
510
+ | 0.5623 | 16200 | 0.0018 | - |
511
+ | 0.5640 | 16250 | 0.0002 | - |
512
+ | 0.5658 | 16300 | 0.0002 | - |
513
+ | 0.5675 | 16350 | 0.0001 | - |
514
+ | 0.5692 | 16400 | 0.0001 | - |
515
+ | 0.5710 | 16450 | 0.0003 | - |
516
+ | 0.5727 | 16500 | 0.0001 | - |
517
+ | 0.5745 | 16550 | 0.0073 | - |
518
+ | 0.5762 | 16600 | 0.0012 | - |
519
+ | 0.5779 | 16650 | 0.0002 | - |
520
+ | 0.5797 | 16700 | 0.0001 | - |
521
+ | 0.5814 | 16750 | 0.0022 | - |
522
+ | 0.5831 | 16800 | 0.0003 | - |
523
+ | 0.5849 | 16850 | 0.0002 | - |
524
+ | 0.5866 | 16900 | 0.0001 | - |
525
+ | 0.5883 | 16950 | 0.0019 | - |
526
+ | 0.5901 | 17000 | 0.0003 | - |
527
+ | 0.5918 | 17050 | 0.0001 | - |
528
+ | 0.5935 | 17100 | 0.0003 | - |
529
+ | 0.5953 | 17150 | 0.0001 | - |
530
+ | 0.5970 | 17200 | 0.0001 | - |
531
+ | 0.5988 | 17250 | 0.0167 | - |
532
+ | 0.6005 | 17300 | 0.0002 | - |
533
+ | 0.6022 | 17350 | 0.0001 | - |
534
+ | 0.6040 | 17400 | 0.0001 | - |
535
+ | 0.6057 | 17450 | 0.0242 | - |
536
+ | 0.6074 | 17500 | 0.0015 | - |
537
+ | 0.6092 | 17550 | 0.0009 | - |
538
+ | 0.6109 | 17600 | 0.0001 | - |
539
+ | 0.6126 | 17650 | 0.0001 | - |
540
+ | 0.6144 | 17700 | 0.0001 | - |
541
+ | 0.6161 | 17750 | 0.0001 | - |
542
+ | 0.6178 | 17800 | 0.0001 | - |
543
+ | 0.6196 | 17850 | 0.0113 | - |
544
+ | 0.6213 | 17900 | 0.0001 | - |
545
+ | 0.6230 | 17950 | 0.0005 | - |
546
+ | 0.6248 | 18000 | 0.0017 | - |
547
+ | 0.6265 | 18050 | 0.0001 | - |
548
+ | 0.6283 | 18100 | 0.0001 | - |
549
+ | 0.6300 | 18150 | 0.0003 | - |
550
+ | 0.6317 | 18200 | 0.0001 | - |
551
+ | 0.6335 | 18250 | 0.0004 | - |
552
+ | 0.6352 | 18300 | 0.0001 | - |
553
+ | 0.6369 | 18350 | 0.0001 | - |
554
+ | 0.6387 | 18400 | 0.0021 | - |
555
+ | 0.6404 | 18450 | 0.0001 | - |
556
+ | 0.6421 | 18500 | 0.0002 | - |
557
+ | 0.6439 | 18550 | 0.0006 | - |
558
+ | 0.6456 | 18600 | 0.0001 | - |
559
+ | 0.6473 | 18650 | 0.0001 | - |
560
+ | 0.6491 | 18700 | 0.0003 | - |
561
+ | 0.6508 | 18750 | 0.0001 | - |
562
+ | 0.6526 | 18800 | 0.0001 | - |
563
+ | 0.6543 | 18850 | 0.0002 | - |
564
+ | 0.6560 | 18900 | 0.001 | - |
565
+ | 0.6578 | 18950 | 0.0002 | - |
566
+ | 0.6595 | 19000 | 0.0047 | - |
567
+ | 0.6612 | 19050 | 0.0001 | - |
568
+ | 0.6630 | 19100 | 0.0001 | - |
569
+ | 0.6647 | 19150 | 0.0002 | - |
570
+ | 0.6664 | 19200 | 0.0001 | - |
571
+ | 0.6682 | 19250 | 0.0001 | - |
572
+ | 0.6699 | 19300 | 0.0064 | - |
573
+ | 0.6716 | 19350 | 0.0001 | - |
574
+ | 0.6734 | 19400 | 0.0001 | - |
575
+ | 0.6751 | 19450 | 0.0001 | - |
576
+ | 0.6768 | 19500 | 0.0001 | - |
577
+ | 0.6786 | 19550 | 0.0001 | - |
578
+ | 0.6803 | 19600 | 0.0001 | - |
579
+ | 0.6821 | 19650 | 0.0001 | - |
580
+ | 0.6838 | 19700 | 0.0001 | - |
581
+ | 0.6855 | 19750 | 0.0002 | - |
582
+ | 0.6873 | 19800 | 0.0001 | - |
583
+ | 0.6890 | 19850 | 0.0001 | - |
584
+ | 0.6907 | 19900 | 0.0001 | - |
585
+ | 0.6925 | 19950 | 0.0001 | - |
586
+ | 0.6942 | 20000 | 0.0002 | - |
587
+ | 0.6959 | 20050 | 0.0015 | - |
588
+ | 0.6977 | 20100 | 0.0002 | - |
589
+ | 0.6994 | 20150 | 0.0001 | - |
590
+ | 0.7011 | 20200 | 0.0001 | - |
591
+ | 0.7029 | 20250 | 0.0001 | - |
592
+ | 0.7046 | 20300 | 0.0011 | - |
593
+ | 0.7064 | 20350 | 0.0001 | - |
594
+ | 0.7081 | 20400 | 0.0001 | - |
595
+ | 0.7098 | 20450 | 0.0001 | - |
596
+ | 0.7116 | 20500 | 0.0057 | - |
597
+ | 0.7133 | 20550 | 0.0 | - |
598
+ | 0.7150 | 20600 | 0.0001 | - |
599
+ | 0.7168 | 20650 | 0.0001 | - |
600
+ | 0.7185 | 20700 | 0.0001 | - |
601
+ | 0.7202 | 20750 | 0.0001 | - |
602
+ | 0.7220 | 20800 | 0.0001 | - |
603
+ | 0.7237 | 20850 | 0.0001 | - |
604
+ | 0.7254 | 20900 | 0.0002 | - |
605
+ | 0.7272 | 20950 | 0.0001 | - |
606
+ | 0.7289 | 21000 | 0.0001 | - |
607
+ | 0.7306 | 21050 | 0.0 | - |
608
+ | 0.7324 | 21100 | 0.0002 | - |
609
+ | 0.7341 | 21150 | 0.0001 | - |
610
+ | 0.7359 | 21200 | 0.0001 | - |
611
+ | 0.7376 | 21250 | 0.0001 | - |
612
+ | 0.7393 | 21300 | 0.0001 | - |
613
+ | 0.7411 | 21350 | 0.0001 | - |
614
+ | 0.7428 | 21400 | 0.0001 | - |
615
+ | 0.7445 | 21450 | 0.0001 | - |
616
+ | 0.7463 | 21500 | 0.0001 | - |
617
+ | 0.7480 | 21550 | 0.005 | - |
618
+ | 0.7497 | 21600 | 0.0001 | - |
619
+ | 0.7515 | 21650 | 0.0001 | - |
620
+ | 0.7532 | 21700 | 0.0001 | - |
621
+ | 0.7549 | 21750 | 0.0002 | - |
622
+ | 0.7567 | 21800 | 0.0001 | - |
623
+ | 0.7584 | 21850 | 0.0013 | - |
624
+ | 0.7602 | 21900 | 0.0001 | - |
625
+ | 0.7619 | 21950 | 0.0002 | - |
626
+ | 0.7636 | 22000 | 0.0 | - |
627
+ | 0.7654 | 22050 | 0.0001 | - |
628
+ | 0.7671 | 22100 | 0.0002 | - |
629
+ | 0.7688 | 22150 | 0.0001 | - |
630
+ | 0.7706 | 22200 | 0.0002 | - |
631
+ | 0.7723 | 22250 | 0.0001 | - |
632
+ | 0.7740 | 22300 | 0.0001 | - |
633
+ | 0.7758 | 22350 | 0.0002 | - |
634
+ | 0.7775 | 22400 | 0.0001 | - |
635
+ | 0.7792 | 22450 | 0.0013 | - |
636
+ | 0.7810 | 22500 | 0.0001 | - |
637
+ | 0.7827 | 22550 | 0.0002 | - |
638
+ | 0.7844 | 22600 | 0.0002 | - |
639
+ | 0.7862 | 22650 | 0.0069 | - |
640
+ | 0.7879 | 22700 | 0.0001 | - |
641
+ | 0.7897 | 22750 | 0.0001 | - |
642
+ | 0.7914 | 22800 | 0.0001 | - |
643
+ | 0.7931 | 22850 | 0.0001 | - |
644
+ | 0.7949 | 22900 | 0.0001 | - |
645
+ | 0.7966 | 22950 | 0.0001 | - |
646
+ | 0.7983 | 23000 | 0.0001 | - |
647
+ | 0.8001 | 23050 | 0.0002 | - |
648
+ | 0.8018 | 23100 | 0.0001 | - |
649
+ | 0.8035 | 23150 | 0.0001 | - |
650
+ | 0.8053 | 23200 | 0.0001 | - |
651
+ | 0.8070 | 23250 | 0.0001 | - |
652
+ | 0.8087 | 23300 | 0.0001 | - |
653
+ | 0.8105 | 23350 | 0.0001 | - |
654
+ | 0.8122 | 23400 | 0.0027 | - |
655
+ | 0.8140 | 23450 | 0.0001 | - |
656
+ | 0.8157 | 23500 | 0.0001 | - |
657
+ | 0.8174 | 23550 | 0.0027 | - |
658
+ | 0.8192 | 23600 | 0.0002 | - |
659
+ | 0.8209 | 23650 | 0.0002 | - |
660
+ | 0.8226 | 23700 | 0.0001 | - |
661
+ | 0.8244 | 23750 | 0.0003 | - |
662
+ | 0.8261 | 23800 | 0.0001 | - |
663
+ | 0.8278 | 23850 | 0.0001 | - |
664
+ | 0.8296 | 23900 | 0.0001 | - |
665
+ | 0.8313 | 23950 | 0.0001 | - |
666
+ | 0.8330 | 24000 | 0.0014 | - |
667
+ | 0.8348 | 24050 | 0.0083 | - |
668
+ | 0.8365 | 24100 | 0.0001 | - |
669
+ | 0.8383 | 24150 | 0.0001 | - |
670
+ | 0.8400 | 24200 | 0.0001 | - |
671
+ | 0.8417 | 24250 | 0.0001 | - |
672
+ | 0.8435 | 24300 | 0.0001 | - |
673
+ | 0.8452 | 24350 | 0.0001 | - |
674
+ | 0.8469 | 24400 | 0.0 | - |
675
+ | 0.8487 | 24450 | 0.0001 | - |
676
+ | 0.8504 | 24500 | 0.0001 | - |
677
+ | 0.8521 | 24550 | 0.022 | - |
678
+ | 0.8539 | 24600 | 0.0001 | - |
679
+ | 0.8556 | 24650 | 0.0001 | - |
680
+ | 0.8573 | 24700 | 0.0003 | - |
681
+ | 0.8591 | 24750 | 0.0001 | - |
682
+ | 0.8608 | 24800 | 0.0002 | - |
683
+ | 0.8625 | 24850 | 0.0001 | - |
684
+ | 0.8643 | 24900 | 0.0001 | - |
685
+ | 0.8660 | 24950 | 0.0001 | - |
686
+ | 0.8678 | 25000 | 0.0002 | - |
687
+ | 0.8695 | 25050 | 0.0001 | - |
688
+ | 0.8712 | 25100 | 0.0001 | - |
689
+ | 0.8730 | 25150 | 0.0001 | - |
690
+ | 0.8747 | 25200 | 0.0001 | - |
691
+ | 0.8764 | 25250 | 0.0007 | - |
692
+ | 0.8782 | 25300 | 0.0001 | - |
693
+ | 0.8799 | 25350 | 0.0001 | - |
694
+ | 0.8816 | 25400 | 0.0002 | - |
695
+ | 0.8834 | 25450 | 0.0001 | - |
696
+ | 0.8851 | 25500 | 0.0001 | - |
697
+ | 0.8868 | 25550 | 0.0001 | - |
698
+ | 0.8886 | 25600 | 0.0006 | - |
699
+ | 0.8903 | 25650 | 0.0003 | - |
700
+ | 0.8921 | 25700 | 0.0001 | - |
701
+ | 0.8938 | 25750 | 0.0002 | - |
702
+ | 0.8955 | 25800 | 0.0001 | - |
703
+ | 0.8973 | 25850 | 0.0001 | - |
704
+ | 0.8990 | 25900 | 0.0015 | - |
705
+ | 0.9007 | 25950 | 0.0005 | - |
706
+ | 0.9025 | 26000 | 0.0001 | - |
707
+ | 0.9042 | 26050 | 0.0056 | - |
708
+ | 0.9059 | 26100 | 0.0001 | - |
709
+ | 0.9077 | 26150 | 0.0001 | - |
710
+ | 0.9094 | 26200 | 0.0001 | - |
711
+ | 0.9111 | 26250 | 0.0001 | - |
712
+ | 0.9129 | 26300 | 0.0001 | - |
713
+ | 0.9146 | 26350 | 0.0001 | - |
714
+ | 0.9163 | 26400 | 0.0002 | - |
715
+ | 0.9181 | 26450 | 0.0001 | - |
716
+ | 0.9198 | 26500 | 0.0003 | - |
717
+ | 0.9216 | 26550 | 0.0001 | - |
718
+ | 0.9233 | 26600 | 0.0001 | - |
719
+ | 0.9250 | 26650 | 0.0002 | - |
720
+ | 0.9268 | 26700 | 0.0001 | - |
721
+ | 0.9285 | 26750 | 0.0002 | - |
722
+ | 0.9302 | 26800 | 0.0001 | - |
723
+ | 0.9320 | 26850 | 0.0002 | - |
724
+ | 0.9337 | 26900 | 0.0001 | - |
725
+ | 0.9354 | 26950 | 0.0001 | - |
726
+ | 0.9372 | 27000 | 0.0001 | - |
727
+ | 0.9389 | 27050 | 0.0001 | - |
728
+ | 0.9406 | 27100 | 0.0001 | - |
729
+ | 0.9424 | 27150 | 0.0001 | - |
730
+ | 0.9441 | 27200 | 0.0001 | - |
731
+ | 0.9459 | 27250 | 0.0001 | - |
732
+ | 0.9476 | 27300 | 0.0001 | - |
733
+ | 0.9493 | 27350 | 0.0001 | - |
734
+ | 0.9511 | 27400 | 0.0001 | - |
735
+ | 0.9528 | 27450 | 0.0001 | - |
736
+ | 0.9545 | 27500 | 0.0001 | - |
737
+ | 0.9563 | 27550 | 0.0035 | - |
738
+ | 0.9580 | 27600 | 0.0001 | - |
739
+ | 0.9597 | 27650 | 0.0002 | - |
740
+ | 0.9615 | 27700 | 0.0001 | - |
741
+ | 0.9632 | 27750 | 0.0001 | - |
742
+ | 0.9649 | 27800 | 0.0001 | - |
743
+ | 0.9667 | 27850 | 0.0002 | - |
744
+ | 0.9684 | 27900 | 0.0 | - |
745
+ | 0.9701 | 27950 | 0.0001 | - |
746
+ | 0.9719 | 28000 | 0.0001 | - |
747
+ | 0.9736 | 28050 | 0.0001 | - |
748
+ | 0.9754 | 28100 | 0.0001 | - |
749
+ | 0.9771 | 28150 | 0.0001 | - |
750
+ | 0.9788 | 28200 | 0.0001 | - |
751
+ | 0.9806 | 28250 | 0.0001 | - |
752
+ | 0.9823 | 28300 | 0.0001 | - |
753
+ | 0.9840 | 28350 | 0.0001 | - |
754
+ | 0.9858 | 28400 | 0.0001 | - |
755
+ | 0.9875 | 28450 | 0.0001 | - |
756
+ | 0.9892 | 28500 | 0.0001 | - |
757
+ | 0.9910 | 28550 | 0.0001 | - |
758
+ | 0.9927 | 28600 | 0.0001 | - |
759
+ | 0.9944 | 28650 | 0.0025 | - |
760
+ | 0.9962 | 28700 | 0.0001 | - |
761
+ | 0.9979 | 28750 | 0.0001 | - |
762
+ | 0.9997 | 28800 | 0.0 | - |
763
+
764
+ ### Framework Versions
765
+ - Python: 3.10.12
766
+ - SetFit: 1.0.3
767
+ - Sentence Transformers: 3.0.1
768
+ - Transformers: 4.39.0
769
+ - PyTorch: 2.3.0+cu121
770
+ - Datasets: 2.19.2
771
+ - Tokenizers: 0.15.2
772
+
773
+ ## Citation
774
+
775
+ ### BibTeX
776
+ ```bibtex
777
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
778
+ doi = {10.48550/ARXIV.2209.11055},
779
+ url = {https://arxiv.org/abs/2209.11055},
780
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
781
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
782
+ title = {Efficient Few-Shot Learning Without Prompts},
783
+ publisher = {arXiv},
784
+ year = {2022},
785
+ copyright = {Creative Commons Attribution 4.0 International}
786
+ }
787
+ ```
788
+
789
+ <!--
790
+ ## Glossary
791
+
792
+ *Clearly define terms in order to be accessible across audiences.*
793
+ -->
794
+
795
+ <!--
796
+ ## Model Card Authors
797
+
798
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
799
+ -->
800
+
801
+ <!--
802
+ ## Model Card Contact
803
+
804
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
805
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.0",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.39.0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "normalize_embeddings": false,
3
+ "labels": [
4
+ "BUSY",
5
+ "DNC",
6
+ "DNQ",
7
+ "GreetBack",
8
+ "Not_Interested",
9
+ "abusive",
10
+ "affirmation",
11
+ "already",
12
+ "answering_machine",
13
+ "are_you_bot",
14
+ "calling_about",
15
+ "can_you_email",
16
+ "complain_calls",
17
+ "decline",
18
+ "greetings",
19
+ "hold_a_sec",
20
+ "interested",
21
+ "language_barrier",
22
+ "not_decision_maker",
23
+ "other",
24
+ "provide_age",
25
+ "say_again",
26
+ "scam",
27
+ "sorry_greeting",
28
+ "transfer_request",
29
+ "weather",
30
+ "where_are_you_calling_from",
31
+ "where_get_number",
32
+ "who_are_you"
33
+ ]
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47c7d78d4984ce314dfdf5e586ad4a666a708546c869c0f100f73425d4943e0b
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b158a996b5bd5b8adcba9b19fcf19a16651bb5ae82c08606386de991f5de7113
3
+ size 182271
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff