--- tags: - audio - automatic-speech-recognition - audio-classification license: apache-2.0 --- # Music Genre Classification using Wav2Vec 2.0 ## How to use ### Requirements ```bash # requirement packages !pip install git+https://github.com/huggingface/datasets.git !pip install git+https://github.com/huggingface/transformers.git !pip install torchaudio !pip install librosa ``` ### Prediction ```python import torch import torch.nn as nn import torch.nn.functional as F import torchaudio from transformers import AutoConfig, Wav2Vec2FeatureExtractor import librosa import IPython.display as ipd import numpy as np import pandas as pd ``` ```python device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_name_or_path = "m3hrdadfi/wav2vec2-base-100k-voxpopuli-gtzan-music" config = AutoConfig.from_pretrained(model_name_or_path) feature_extractor = Wav2Vec2Processor.from_pretrained(model_name_or_path) sampling_rate = feature_extractor.sampling_rate model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device) ``` ```python def speech_file_to_array_fn(path, sampling_rate): speech_array, _sampling_rate = torchaudio.load(path) resampler = torchaudio.transforms.Resample(_sampling_rate) speech = resampler(speech_array).squeeze().numpy() return speech def predict(path, sampling_rate): speech = speech_file_to_array_fn(path, sampling_rate) features = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True) input_values = features.input_values.to(device) with torch.no_grad(): logits = model(input_values).logits scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0] outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)] return outputs ``` ```python path = "genres_original/disco/disco.00067.wav" outputs = predict(path, sampling_rate) ``` ```bash [ {'Label': 'blues', 'Score': '0.0%'}, {'Label': 'classical', 'Score': '0.0%'}, {'Label': 'country', 'Score': '0.0%'}, {'Label': 'disco', 'Score': '99.8%'}, {'Label': 'hiphop', 'Score': '0.0%'}, {'Label': 'jazz', 'Score': '0.0%'}, {'Label': 'metal', 'Score': '0.0%'}, {'Label': 'pop', 'Score': '0.0%'}, {'Label': 'reggae', 'Score': '0.0%'}, {'Label': 'rock', 'Score': '0.0%'} ] ``` ## Evaluation The following tables summarize the scores obtained by model overall and per each class. | label | precision | recall | f1-score | support | |:------------:|:---------:|:------:|:--------:|:-------:| | blues | 0.792 | 0.950 | 0.864 | 20 | | classical | 0.864 | 0.950 | 0.905 | 20 | | country | 0.812 | 0.650 | 0.722 | 20 | | disco | 0.778 | 0.700 | 0.737 | 20 | | hiphop | 0.933 | 0.700 | 0.800 | 20 | | jazz | 1.000 | 0.850 | 0.919 | 20 | | metal | 0.783 | 0.900 | 0.837 | 20 | | pop | 0.917 | 0.550 | 0.687 | 20 | | reggae | 0.543 | 0.950 | 0.691 | 20 | | rock | 0.611 | 0.550 | 0.579 | 20 | | accuracy | 0.775 | 0.775 | 0.775 | 0 | | macro avg | 0.803 | 0.775 | 0.774 | 200 | | weighted avg | 0.803 | 0.775 | 0.774 | 200 | ## Questions? Post a Github issue from [HERE](https://github.com/m3hrdadfi/soxan/issues).