Initial model
Browse files- .ipynb_checkpoints/config-checkpoint.json +76 -0
- README.md +349 -0
- all_results.json +24 -0
- config.json +76 -0
- eval_results.json +12 -0
- predictions.csv +0 -0
- preprocessor_config.json +8 -0
- pytorch_model.bin +3 -0
- result.bin +3 -0
- sample4024.flac +0 -0
- sample4084.flac +0 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- train_results.json +15 -0
- trainer_state.json +331 -0
- training_args.bin +3 -0
- vocab.json +1 -0
.ipynb_checkpoints/config-checkpoint.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.0,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 0,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 40
|
76 |
+
}
|
README.md
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: fa
|
3 |
+
datasets:
|
4 |
+
- common_voice
|
5 |
+
tags:
|
6 |
+
- audio
|
7 |
+
- automatic-speech-recognition
|
8 |
+
- speech
|
9 |
+
- xlsr-fine-tuning-week
|
10 |
+
license: apache-2.0
|
11 |
+
widget:
|
12 |
+
- label: Common Voice sample 4024
|
13 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v2/resolve/main/sample4024.flac
|
14 |
+
- label: Common Voice sample 4084
|
15 |
+
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-persian-v2/resolve/main/sample4084.flac
|
16 |
+
model-index:
|
17 |
+
- name: XLSR Wav2Vec2 Persian (Farsi) V2 by Mehrdad Farahani
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
name: Speech Recognition
|
21 |
+
type: automatic-speech-recognition
|
22 |
+
dataset:
|
23 |
+
name: Common Voice fa
|
24 |
+
type: common_voice
|
25 |
+
args: fa
|
26 |
+
metrics:
|
27 |
+
- name: Test WER
|
28 |
+
type: wer
|
29 |
+
value: 31.92
|
30 |
+
|
31 |
+
---
|
32 |
+
|
33 |
+
# Wav2Vec2-Large-XLSR-53-Persian V2
|
34 |
+
|
35 |
+
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Persian (Farsi) using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
|
36 |
+
|
37 |
+
## Usage
|
38 |
+
The model can be used directly (without a language model) as follows:
|
39 |
+
|
40 |
+
**Requirements**
|
41 |
+
```bash
|
42 |
+
# requirement packages
|
43 |
+
!pip install git+https://github.com/huggingface/datasets.git
|
44 |
+
!pip install git+https://github.com/huggingface/transformers.git
|
45 |
+
!pip install torchaudio
|
46 |
+
!pip install librosa
|
47 |
+
!pip install jiwer
|
48 |
+
!pip install hazm
|
49 |
+
```
|
50 |
+
|
51 |
+
|
52 |
+
**Prediction**
|
53 |
+
```python
|
54 |
+
import librosa
|
55 |
+
import torch
|
56 |
+
import torchaudio
|
57 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
58 |
+
from datasets import load_dataset
|
59 |
+
|
60 |
+
import numpy as np
|
61 |
+
import hazm
|
62 |
+
import re
|
63 |
+
import string
|
64 |
+
|
65 |
+
import IPython.display as ipd
|
66 |
+
|
67 |
+
_normalizer = hazm.Normalizer()
|
68 |
+
|
69 |
+
chars_to_ignore = [
|
70 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
71 |
+
"#", "!", "؟", "?", "«", "»", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?",
|
72 |
+
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„',
|
73 |
+
'ā', 'š',
|
74 |
+
# "ء",
|
75 |
+
]
|
76 |
+
|
77 |
+
# In case of farsi
|
78 |
+
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits)
|
79 |
+
|
80 |
+
chars_to_mapping = {
|
81 |
+
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی',
|
82 |
+
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی",
|
83 |
+
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع",
|
84 |
+
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", 'ﺍ': "ا", 'ة': "ه",
|
85 |
+
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش",
|
86 |
+
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ",
|
87 |
+
|
88 |
+
# "ها": " ها", "ئ": "ی",
|
89 |
+
|
90 |
+
"a": " ای ", "b": " بی ", "c": " سی ", "d": " دی ", "e": " ایی ", "f": " اف ",
|
91 |
+
"g": " جی ", "h": " اچ ", "i": " آی ", "j": " جی ", "k": " کی ", "l": " ال ",
|
92 |
+
"m": " ام ", "n": " ان ", "o": " او ", "p": " پی ", "q": " کیو ", "r": " آر ",
|
93 |
+
"s": " اس ", "t": " تی ", "u": " یو ", "v": " وی ", "w": " دبلیو ", "x": " اکس ",
|
94 |
+
"y": " وای ", "z": " زد ",
|
95 |
+
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
|
96 |
+
}
|
97 |
+
|
98 |
+
def multiple_replace(text, chars_to_mapping):
|
99 |
+
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
|
100 |
+
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
|
101 |
+
|
102 |
+
def remove_special_characters(text, chars_to_ignore_regex):
|
103 |
+
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
|
104 |
+
return text
|
105 |
+
|
106 |
+
def normalizer(batch, chars_to_ignore, chars_to_mapping):
|
107 |
+
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
|
108 |
+
text = batch["sentence"].lower().strip()
|
109 |
+
|
110 |
+
text = _normalizer.normalize(text)
|
111 |
+
text = multiple_replace(text, chars_to_mapping)
|
112 |
+
text = remove_special_characters(text, chars_to_ignore_regex)
|
113 |
+
text = re.sub(" +", " ", text)
|
114 |
+
text = text.strip() + " "
|
115 |
+
|
116 |
+
batch["sentence"] = text
|
117 |
+
return batch
|
118 |
+
|
119 |
+
|
120 |
+
def speech_file_to_array_fn(batch):
|
121 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
122 |
+
speech_array = speech_array.squeeze().numpy()
|
123 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
124 |
+
|
125 |
+
batch["speech"] = speech_array
|
126 |
+
return batch
|
127 |
+
|
128 |
+
|
129 |
+
def predict(batch):
|
130 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
131 |
+
|
132 |
+
input_values = features.input_values.to(device)
|
133 |
+
attention_mask = features.attention_mask.to(device)
|
134 |
+
|
135 |
+
with torch.no_grad():
|
136 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
137 |
+
|
138 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
139 |
+
|
140 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
141 |
+
return batch
|
142 |
+
|
143 |
+
|
144 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
145 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-v2")
|
146 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-v2").to(device)
|
147 |
+
|
148 |
+
dataset = load_dataset("common_voice", "fa", split="test[:1%]")
|
149 |
+
dataset = dataset.map(
|
150 |
+
normalizer,
|
151 |
+
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
|
152 |
+
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
|
153 |
+
)
|
154 |
+
|
155 |
+
dataset = dataset.map(speech_file_to_array_fn)
|
156 |
+
result = dataset.map(predict)
|
157 |
+
|
158 |
+
max_items = np.random.randint(0, len(result), 20).tolist()
|
159 |
+
for i in max_items:
|
160 |
+
reference, predicted = result["sentence"][i], result["predicted"][i]
|
161 |
+
print("reference:", reference)
|
162 |
+
print("predicted:", predicted)
|
163 |
+
print('---')
|
164 |
+
```
|
165 |
+
|
166 |
+
**Output:**
|
167 |
+
```text
|
168 |
+
reference: عجم زنده کردم بدین پارسی
|
169 |
+
predicted: عجم زنده کردم بدین پارسی
|
170 |
+
---
|
171 |
+
reference: لباس هایم کی آماده خواهند شد
|
172 |
+
predicted: لباس خایم کی آماده خواهند شد
|
173 |
+
---
|
174 |
+
reference: با مهان همنشین شدم
|
175 |
+
predicted: با مهان همنشین شدم
|
176 |
+
---
|
177 |
+
reference: یکی از بهترین فیلم هایی بود که در این سال ها دیدم
|
178 |
+
predicted: یکی از بهترین فیلمهایی بود که در این سالها دیدم
|
179 |
+
---
|
180 |
+
reference: اون خیلی بد ماساژ میده
|
181 |
+
predicted: اون خیلی بد ماساژ میده
|
182 |
+
---
|
183 |
+
reference: هنوزم بزرگترین دستاورد دولت روحانی اینه که رییسی رییسجمهور نشد
|
184 |
+
predicted: هنوزم بزرگترین دستآوردار دولت روانیاینه که ریسی ریسیومرو نشد
|
185 |
+
---
|
186 |
+
reference: واسه بدنسازی آماده ای
|
187 |
+
predicted: واسه بعدنسافی آماده ای
|
188 |
+
---
|
189 |
+
reference: خدای من شماها سالمین
|
190 |
+
predicted: خدای من شما ها سالمین
|
191 |
+
---
|
192 |
+
reference: بهشون ثابت میشه که دروغ نگفتم
|
193 |
+
predicted: بهشون ثابت میشه که دروغ مگفتم
|
194 |
+
---
|
195 |
+
reference: آیا ممکن است یک پتو برای من بیاورید
|
196 |
+
predicted: سف کمیتخ لظا
|
197 |
+
---
|
198 |
+
reference: نزدیک جلو
|
199 |
+
predicted: رزیک جلو
|
200 |
+
---
|
201 |
+
reference: شایعه پراکن دربارهاش دروغ و شایعه می سازد
|
202 |
+
predicted: شایه پراکن دربارهاش دروغ و شایعه می سازد
|
203 |
+
---
|
204 |
+
reference: وقتی نیاز است که یک چهره دوستانه بیابند
|
205 |
+
predicted: وقتی نیاز است یک چهره دوستانه بیابند
|
206 |
+
---
|
207 |
+
reference: ممکنه رادیواکتیوی چیزی باشه
|
208 |
+
predicted: ممکنه به آدیوتیوی چیزی باشه
|
209 |
+
---
|
210 |
+
reference: دهنتون رو ببندید
|
211 |
+
predicted: دهن جن رو ببندید
|
212 |
+
---
|
213 |
+
reference: پاشیم بریم قند و شکر و روغنمون رو بگیریم تا تموم نشده
|
214 |
+
predicted: پاشین بریم قند و شکر و روغنمون رو بگیریم تا تموم نشده
|
215 |
+
---
|
216 |
+
reference: اما قبل از تمام کردن بحث تاریخی باید ذکری هم از ناپیکس بکنیم
|
217 |
+
predicted: اما قبل از تمام کردن بحث تاریخی باید ذکری هم از نایپکس بکنیم
|
218 |
+
---
|
219 |
+
reference: لطفا کپی امضا شده قرارداد را بازگردانید
|
220 |
+
predicted: لطفا کپی امضال شده قرار داد را باز گردانید
|
221 |
+
---
|
222 |
+
reference: خیلی هم چیز مهمی نیست
|
223 |
+
predicted: خیلی هم چیز مهمی نیست
|
224 |
+
---
|
225 |
+
reference: شایعه پراکن دربارهاش دروغ و شایعه می سازد
|
226 |
+
predicted: شایه پراکن دربارهاش دروغ و شایعه می سازد
|
227 |
+
---
|
228 |
+
```
|
229 |
+
|
230 |
+
## Evaluation
|
231 |
+
|
232 |
+
The model can be evaluated as follows on the Persian (Farsi) test data of Common Voice.
|
233 |
+
|
234 |
+
```python
|
235 |
+
import librosa
|
236 |
+
import torch
|
237 |
+
import torchaudio
|
238 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
239 |
+
from datasets import load_dataset, load_metric
|
240 |
+
|
241 |
+
import numpy as np
|
242 |
+
import hazm
|
243 |
+
import re
|
244 |
+
import string
|
245 |
+
|
246 |
+
_normalizer = hazm.Normalizer()
|
247 |
+
|
248 |
+
chars_to_ignore = [
|
249 |
+
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "�",
|
250 |
+
"#", "!", "؟", "?", "«", "»", "،", "(", ")", "؛", "'ٔ", "٬",'ٔ', ",", "?",
|
251 |
+
".", "!", "-", ";", ":",'"',"“", "%", "‘", "”", "�", "–", "…", "_", "”", '“', '„',
|
252 |
+
'ā', 'š',
|
253 |
+
# "ء",
|
254 |
+
]
|
255 |
+
|
256 |
+
# In case of farsi
|
257 |
+
chars_to_ignore = chars_to_ignore + list(string.ascii_lowercase + string.digits)
|
258 |
+
|
259 |
+
chars_to_mapping = {
|
260 |
+
'ك': 'ک', 'دِ': 'د', 'بِ': 'ب', 'زِ': 'ز', 'ذِ': 'ذ', 'شِ': 'ش', 'سِ': 'س', 'ى': 'ی',
|
261 |
+
'ي': 'ی', 'أ': 'ا', 'ؤ': 'و', "ے": "ی", "ۀ": "ه", "ﭘ": "پ", "ﮐ": "ک", "ﯽ": "ی",
|
262 |
+
"ﺎ": "ا", "ﺑ": "ب", "ﺘ": "ت", "ﺧ": "خ", "ﺩ": "د", "ﺱ": "س", "ﻀ": "ض", "ﻌ": "ع",
|
263 |
+
"ﻟ": "ل", "ﻡ": "م", "ﻢ": "م", "ﻪ": "ه", "ﻮ": "و", 'ﺍ': "ا", 'ة': "ه",
|
264 |
+
'ﯾ': "ی", 'ﯿ': "ی", 'ﺒ': "ب", 'ﺖ': "ت", 'ﺪ': "د", 'ﺮ': "ر", 'ﺴ': "س", 'ﺷ': "ش",
|
265 |
+
'ﺸ': "ش", 'ﻋ': "ع", 'ﻤ': "م", 'ﻥ': "ن", 'ﻧ': "ن", 'ﻭ': "و", 'ﺭ': "ر", "ﮔ": "گ",
|
266 |
+
|
267 |
+
# "ها": " ها", "ئ": "ی",
|
268 |
+
|
269 |
+
"a": " ای ", "b": " بی ", "c": " سی ", "d": " دی ", "e": " ایی ", "f": " اف ",
|
270 |
+
"g": " جی ", "h": " اچ ", "i": " آی ", "j": " جی ", "k": " کی ", "l": " ال ",
|
271 |
+
"m": " ام ", "n": " ان ", "o": " او ", "p": " پی ", "q": " کیو ", "r": " آر ",
|
272 |
+
"s": " اس ", "t": " تی ", "u": " یو ", "v": " وی ", "w": " دبلیو ", "x": " اکس ",
|
273 |
+
"y": " وای ", "z": " زد ",
|
274 |
+
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
|
275 |
+
}
|
276 |
+
|
277 |
+
def multiple_replace(text, chars_to_mapping):
|
278 |
+
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
|
279 |
+
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
|
280 |
+
|
281 |
+
def remove_special_characters(text, chars_to_ignore_regex):
|
282 |
+
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
|
283 |
+
return text
|
284 |
+
|
285 |
+
def normalizer(batch, chars_to_ignore, chars_to_mapping):
|
286 |
+
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
|
287 |
+
text = batch["sentence"].lower().strip()
|
288 |
+
|
289 |
+
text = _normalizer.normalize(text)
|
290 |
+
text = multiple_replace(text, chars_to_mapping)
|
291 |
+
text = remove_special_characters(text, chars_to_ignore_regex)
|
292 |
+
text = re.sub(" +", " ", text)
|
293 |
+
text = text.strip() + " "
|
294 |
+
|
295 |
+
batch["sentence"] = text
|
296 |
+
return batch
|
297 |
+
|
298 |
+
|
299 |
+
def speech_file_to_array_fn(batch):
|
300 |
+
speech_array, sampling_rate = torchaudio.load(batch["path"])
|
301 |
+
speech_array = speech_array.squeeze().numpy()
|
302 |
+
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
|
303 |
+
|
304 |
+
batch["speech"] = speech_array
|
305 |
+
return batch
|
306 |
+
|
307 |
+
|
308 |
+
def predict(batch):
|
309 |
+
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
|
310 |
+
|
311 |
+
input_values = features.input_values.to(device)
|
312 |
+
attention_mask = features.attention_mask.to(device)
|
313 |
+
|
314 |
+
with torch.no_grad():
|
315 |
+
logits = model(input_values, attention_mask=attention_mask).logits
|
316 |
+
|
317 |
+
pred_ids = torch.argmax(logits, dim=-1)
|
318 |
+
|
319 |
+
batch["predicted"] = processor.batch_decode(pred_ids)[0]
|
320 |
+
return batch
|
321 |
+
|
322 |
+
|
323 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
324 |
+
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-v2")
|
325 |
+
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-persian-v2").to(device)
|
326 |
+
|
327 |
+
dataset = load_dataset("common_voice", "fa", split="test")
|
328 |
+
dataset = dataset.map(
|
329 |
+
normalizer,
|
330 |
+
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
|
331 |
+
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
|
332 |
+
)
|
333 |
+
dataset = dataset.map(speech_file_to_array_fn)
|
334 |
+
result = dataset.map(predict)
|
335 |
+
|
336 |
+
wer = load_metric("wer")
|
337 |
+
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
|
338 |
+
```
|
339 |
+
|
340 |
+
**Test Result:**
|
341 |
+
- WER: 31.92%
|
342 |
+
|
343 |
+
|
344 |
+
## Training
|
345 |
+
The Common Voice `train`, `validation` datasets were used for training.
|
346 |
+
|
347 |
+
You can see the training states [here](https://wandb.ai/m3hrdadfi/finetuned_wav2vec_xlsr_persian/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Persian--Vmlldzo1NjY1NjU?accessToken=pspukt0liicopnwe93wo1ipetqk0gzkuv8669g00wc6hcesk1fh0rfkbd0h46unk)
|
348 |
+
|
349 |
+
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Persian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb)
|
all_results.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_loss": 0.5013265609741211,
|
4 |
+
"eval_mem_cpu_alloc_delta": 447967023,
|
5 |
+
"eval_mem_cpu_peaked_delta": 40936880,
|
6 |
+
"eval_mem_gpu_alloc_delta": 0,
|
7 |
+
"eval_mem_gpu_peaked_delta": 6271776768,
|
8 |
+
"eval_runtime": 635.3557,
|
9 |
+
"eval_samples": 5208,
|
10 |
+
"eval_samples_per_second": 8.197,
|
11 |
+
"eval_wer": 0.32129213337144935,
|
12 |
+
"init_mem_cpu_alloc_delta": 20270917,
|
13 |
+
"init_mem_cpu_peaked_delta": 18306,
|
14 |
+
"init_mem_gpu_alloc_delta": 1261919232,
|
15 |
+
"init_mem_gpu_peaked_delta": 0,
|
16 |
+
"total_flos": 4.998078272539758e+19,
|
17 |
+
"train_mem_cpu_alloc_delta": 57067470,
|
18 |
+
"train_mem_cpu_peaked_delta": 487786762,
|
19 |
+
"train_mem_gpu_alloc_delta": 3793118208,
|
20 |
+
"train_mem_gpu_peaked_delta": 6813593600,
|
21 |
+
"train_runtime": 61300.1017,
|
22 |
+
"train_samples": 12730,
|
23 |
+
"train_samples_per_second": 0.111
|
24 |
+
}
|
config.json
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-large-xlsr-53",
|
3 |
+
"activation_dropout": 0.0,
|
4 |
+
"apply_spec_augment": true,
|
5 |
+
"architectures": [
|
6 |
+
"Wav2Vec2ForCTC"
|
7 |
+
],
|
8 |
+
"attention_dropout": 0.1,
|
9 |
+
"bos_token_id": 1,
|
10 |
+
"conv_bias": true,
|
11 |
+
"conv_dim": [
|
12 |
+
512,
|
13 |
+
512,
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512,
|
17 |
+
512,
|
18 |
+
512
|
19 |
+
],
|
20 |
+
"conv_kernel": [
|
21 |
+
10,
|
22 |
+
3,
|
23 |
+
3,
|
24 |
+
3,
|
25 |
+
3,
|
26 |
+
2,
|
27 |
+
2
|
28 |
+
],
|
29 |
+
"conv_stride": [
|
30 |
+
5,
|
31 |
+
2,
|
32 |
+
2,
|
33 |
+
2,
|
34 |
+
2,
|
35 |
+
2,
|
36 |
+
2
|
37 |
+
],
|
38 |
+
"ctc_loss_reduction": "mean",
|
39 |
+
"ctc_zero_infinity": true,
|
40 |
+
"do_stable_layer_norm": true,
|
41 |
+
"eos_token_id": 2,
|
42 |
+
"feat_extract_activation": "gelu",
|
43 |
+
"feat_extract_dropout": 0.0,
|
44 |
+
"feat_extract_norm": "layer",
|
45 |
+
"feat_proj_dropout": 0.0,
|
46 |
+
"final_dropout": 0.0,
|
47 |
+
"gradient_checkpointing": true,
|
48 |
+
"hidden_act": "gelu",
|
49 |
+
"hidden_dropout": 0.1,
|
50 |
+
"hidden_size": 1024,
|
51 |
+
"initializer_range": 0.02,
|
52 |
+
"intermediate_size": 4096,
|
53 |
+
"layer_norm_eps": 1e-05,
|
54 |
+
"layerdrop": 0.1,
|
55 |
+
"mask_channel_length": 10,
|
56 |
+
"mask_channel_min_space": 1,
|
57 |
+
"mask_channel_other": 0.0,
|
58 |
+
"mask_channel_prob": 0.0,
|
59 |
+
"mask_channel_selection": "static",
|
60 |
+
"mask_feature_length": 10,
|
61 |
+
"mask_feature_prob": 0.0,
|
62 |
+
"mask_time_length": 10,
|
63 |
+
"mask_time_min_space": 1,
|
64 |
+
"mask_time_other": 0.0,
|
65 |
+
"mask_time_prob": 0.05,
|
66 |
+
"mask_time_selection": "static",
|
67 |
+
"model_type": "wav2vec2",
|
68 |
+
"num_attention_heads": 16,
|
69 |
+
"num_conv_pos_embedding_groups": 16,
|
70 |
+
"num_conv_pos_embeddings": 128,
|
71 |
+
"num_feat_extract_layers": 7,
|
72 |
+
"num_hidden_layers": 24,
|
73 |
+
"pad_token_id": 0,
|
74 |
+
"transformers_version": "4.5.0.dev0",
|
75 |
+
"vocab_size": 40
|
76 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"eval_loss": 0.5013265609741211,
|
4 |
+
"eval_mem_cpu_alloc_delta": 447967023,
|
5 |
+
"eval_mem_cpu_peaked_delta": 40936880,
|
6 |
+
"eval_mem_gpu_alloc_delta": 0,
|
7 |
+
"eval_mem_gpu_peaked_delta": 6271776768,
|
8 |
+
"eval_runtime": 635.3557,
|
9 |
+
"eval_samples": 5208,
|
10 |
+
"eval_samples_per_second": 8.197,
|
11 |
+
"eval_wer": 0.32129213337144935
|
12 |
+
}
|
predictions.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"do_normalize": true,
|
3 |
+
"feature_size": 1,
|
4 |
+
"padding_side": "right",
|
5 |
+
"padding_value": 0.0,
|
6 |
+
"return_attention_mask": true,
|
7 |
+
"sampling_rate": 16000
|
8 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c06a17254c2d51cc616567a8b7d0add932760e3c193d03c46676ee2441b322f0
|
3 |
+
size 1262097815
|
result.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a47518a2653bffa224b006c91801824b302bac9dd29cda2a1360948b7837aa1d
|
3 |
+
size 3183
|
sample4024.flac
ADDED
Binary file (56.3 kB). View file
|
|
sample4084.flac
ADDED
Binary file (112 kB). View file
|
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "<unk>", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "<pad>", "do_lower_case": false, "word_delimiter_token": "|"}
|
train_results.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 30.0,
|
3 |
+
"init_mem_cpu_alloc_delta": 20270917,
|
4 |
+
"init_mem_cpu_peaked_delta": 18306,
|
5 |
+
"init_mem_gpu_alloc_delta": 1261919232,
|
6 |
+
"init_mem_gpu_peaked_delta": 0,
|
7 |
+
"total_flos": 4.998078272539758e+19,
|
8 |
+
"train_mem_cpu_alloc_delta": 57067470,
|
9 |
+
"train_mem_cpu_peaked_delta": 487786762,
|
10 |
+
"train_mem_gpu_alloc_delta": 3793118208,
|
11 |
+
"train_mem_gpu_peaked_delta": 6813593600,
|
12 |
+
"train_runtime": 61300.1017,
|
13 |
+
"train_samples": 12730,
|
14 |
+
"train_samples_per_second": 0.111
|
15 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": null,
|
3 |
+
"best_model_checkpoint": null,
|
4 |
+
"epoch": 29.997802197802198,
|
5 |
+
"global_step": 6810,
|
6 |
+
"is_hyper_param_search": false,
|
7 |
+
"is_local_process_zero": true,
|
8 |
+
"is_world_process_zero": true,
|
9 |
+
"log_history": [
|
10 |
+
{
|
11 |
+
"epoch": 1.32,
|
12 |
+
"learning_rate": 0.00017999999999999998,
|
13 |
+
"loss": 11.6291,
|
14 |
+
"step": 300
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"epoch": 1.32,
|
18 |
+
"eval_loss": 3.028644323348999,
|
19 |
+
"eval_runtime": 643.9816,
|
20 |
+
"eval_samples_per_second": 8.087,
|
21 |
+
"eval_wer": 1.0,
|
22 |
+
"step": 300
|
23 |
+
},
|
24 |
+
{
|
25 |
+
"epoch": 2.64,
|
26 |
+
"learning_rate": 0.0002952456418383518,
|
27 |
+
"loss": 3.0796,
|
28 |
+
"step": 600
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 2.64,
|
32 |
+
"eval_loss": 2.9614171981811523,
|
33 |
+
"eval_runtime": 650.4972,
|
34 |
+
"eval_samples_per_second": 8.006,
|
35 |
+
"eval_wer": 1.0,
|
36 |
+
"step": 600
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"epoch": 3.96,
|
40 |
+
"learning_rate": 0.0002809825673534073,
|
41 |
+
"loss": 1.6756,
|
42 |
+
"step": 900
|
43 |
+
},
|
44 |
+
{
|
45 |
+
"epoch": 3.96,
|
46 |
+
"eval_loss": 0.6643654108047485,
|
47 |
+
"eval_runtime": 668.5248,
|
48 |
+
"eval_samples_per_second": 7.79,
|
49 |
+
"eval_wer": 0.5919852387016294,
|
50 |
+
"step": 900
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"epoch": 5.29,
|
54 |
+
"learning_rate": 0.00026671949286846274,
|
55 |
+
"loss": 0.5169,
|
56 |
+
"step": 1200
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"epoch": 5.29,
|
60 |
+
"eval_loss": 0.48998841643333435,
|
61 |
+
"eval_runtime": 670.8355,
|
62 |
+
"eval_samples_per_second": 7.763,
|
63 |
+
"eval_wer": 0.4740247927440942,
|
64 |
+
"step": 1200
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"epoch": 6.61,
|
68 |
+
"learning_rate": 0.0002524564183835182,
|
69 |
+
"loss": 0.3643,
|
70 |
+
"step": 1500
|
71 |
+
},
|
72 |
+
{
|
73 |
+
"epoch": 6.61,
|
74 |
+
"eval_loss": 0.4465296268463135,
|
75 |
+
"eval_runtime": 685.664,
|
76 |
+
"eval_samples_per_second": 7.596,
|
77 |
+
"eval_wer": 0.43660178279061307,
|
78 |
+
"step": 1500
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 7.93,
|
82 |
+
"learning_rate": 0.00023819334389857367,
|
83 |
+
"loss": 0.277,
|
84 |
+
"step": 1800
|
85 |
+
},
|
86 |
+
{
|
87 |
+
"epoch": 7.93,
|
88 |
+
"eval_loss": 0.4225097894668579,
|
89 |
+
"eval_runtime": 675.9712,
|
90 |
+
"eval_samples_per_second": 7.704,
|
91 |
+
"eval_wer": 0.4157592453026326,
|
92 |
+
"step": 1800
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"epoch": 9.25,
|
96 |
+
"learning_rate": 0.00022393026941362913,
|
97 |
+
"loss": 0.2271,
|
98 |
+
"step": 2100
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"epoch": 9.25,
|
102 |
+
"eval_loss": 0.4406384825706482,
|
103 |
+
"eval_runtime": 685.3056,
|
104 |
+
"eval_samples_per_second": 7.6,
|
105 |
+
"eval_wer": 0.39260375789391616,
|
106 |
+
"step": 2100
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"epoch": 10.57,
|
110 |
+
"learning_rate": 0.0002096671949286846,
|
111 |
+
"loss": 0.1895,
|
112 |
+
"step": 2400
|
113 |
+
},
|
114 |
+
{
|
115 |
+
"epoch": 10.57,
|
116 |
+
"eval_loss": 0.4478096067905426,
|
117 |
+
"eval_runtime": 689.1958,
|
118 |
+
"eval_samples_per_second": 7.557,
|
119 |
+
"eval_wer": 0.3899529613555446,
|
120 |
+
"step": 2400
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"epoch": 11.89,
|
124 |
+
"learning_rate": 0.0001954041204437401,
|
125 |
+
"loss": 0.1653,
|
126 |
+
"step": 2700
|
127 |
+
},
|
128 |
+
{
|
129 |
+
"epoch": 11.89,
|
130 |
+
"eval_loss": 0.4374055862426758,
|
131 |
+
"eval_runtime": 693.8794,
|
132 |
+
"eval_samples_per_second": 7.506,
|
133 |
+
"eval_wer": 0.3792977987993451,
|
134 |
+
"step": 2700
|
135 |
+
},
|
136 |
+
{
|
137 |
+
"epoch": 13.22,
|
138 |
+
"learning_rate": 0.00018114104595879556,
|
139 |
+
"loss": 0.1366,
|
140 |
+
"step": 3000
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"epoch": 13.22,
|
144 |
+
"eval_loss": 0.4575331211090088,
|
145 |
+
"eval_runtime": 703.7067,
|
146 |
+
"eval_samples_per_second": 7.401,
|
147 |
+
"eval_wer": 0.37355440629954,
|
148 |
+
"step": 3000
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"epoch": 14.54,
|
152 |
+
"learning_rate": 0.000166877971473851,
|
153 |
+
"loss": 0.1219,
|
154 |
+
"step": 3300
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 14.54,
|
158 |
+
"eval_loss": 0.4847738444805145,
|
159 |
+
"eval_runtime": 705.6195,
|
160 |
+
"eval_samples_per_second": 7.381,
|
161 |
+
"eval_wer": 0.36983809350554847,
|
162 |
+
"step": 3300
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"epoch": 15.86,
|
166 |
+
"learning_rate": 0.00015261489698890646,
|
167 |
+
"loss": 0.1102,
|
168 |
+
"step": 3600
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"epoch": 15.86,
|
172 |
+
"eval_loss": 0.4509291350841522,
|
173 |
+
"eval_runtime": 713.2815,
|
174 |
+
"eval_samples_per_second": 7.301,
|
175 |
+
"eval_wer": 0.35738974505574467,
|
176 |
+
"step": 3600
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"epoch": 17.18,
|
180 |
+
"learning_rate": 0.00013835182250396196,
|
181 |
+
"loss": 0.1017,
|
182 |
+
"step": 3900
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"epoch": 17.18,
|
186 |
+
"eval_loss": 0.45042145252227783,
|
187 |
+
"eval_runtime": 714.3616,
|
188 |
+
"eval_samples_per_second": 7.29,
|
189 |
+
"eval_wer": 0.34715039372125056,
|
190 |
+
"step": 3900
|
191 |
+
},
|
192 |
+
{
|
193 |
+
"epoch": 18.5,
|
194 |
+
"learning_rate": 0.00012408874801901742,
|
195 |
+
"loss": 0.0937,
|
196 |
+
"step": 4200
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"epoch": 18.5,
|
200 |
+
"eval_loss": 0.4522610008716583,
|
201 |
+
"eval_runtime": 719.9965,
|
202 |
+
"eval_samples_per_second": 7.233,
|
203 |
+
"eval_wer": 0.3469164999090413,
|
204 |
+
"step": 4200
|
205 |
+
},
|
206 |
+
{
|
207 |
+
"epoch": 19.82,
|
208 |
+
"learning_rate": 0.00010982567353407289,
|
209 |
+
"loss": 0.0829,
|
210 |
+
"step": 4500
|
211 |
+
},
|
212 |
+
{
|
213 |
+
"epoch": 19.82,
|
214 |
+
"eval_loss": 0.4488724172115326,
|
215 |
+
"eval_runtime": 720.1162,
|
216 |
+
"eval_samples_per_second": 7.232,
|
217 |
+
"eval_wer": 0.3452012786195067,
|
218 |
+
"step": 4500
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"epoch": 21.15,
|
222 |
+
"learning_rate": 9.556259904912835e-05,
|
223 |
+
"loss": 0.0752,
|
224 |
+
"step": 4800
|
225 |
+
},
|
226 |
+
{
|
227 |
+
"epoch": 21.15,
|
228 |
+
"eval_loss": 0.4762090742588043,
|
229 |
+
"eval_runtime": 730.1963,
|
230 |
+
"eval_samples_per_second": 7.132,
|
231 |
+
"eval_wer": 0.33800254684373293,
|
232 |
+
"step": 4800
|
233 |
+
},
|
234 |
+
{
|
235 |
+
"epoch": 22.47,
|
236 |
+
"learning_rate": 8.129952456418383e-05,
|
237 |
+
"loss": 0.0698,
|
238 |
+
"step": 5100
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"epoch": 22.47,
|
242 |
+
"eval_loss": 0.480989009141922,
|
243 |
+
"eval_runtime": 727.7194,
|
244 |
+
"eval_samples_per_second": 7.157,
|
245 |
+
"eval_wer": 0.33597546713791937,
|
246 |
+
"step": 5100
|
247 |
+
},
|
248 |
+
{
|
249 |
+
"epoch": 23.79,
|
250 |
+
"learning_rate": 6.70364500792393e-05,
|
251 |
+
"loss": 0.0642,
|
252 |
+
"step": 5400
|
253 |
+
},
|
254 |
+
{
|
255 |
+
"epoch": 23.79,
|
256 |
+
"eval_loss": 0.49236759543418884,
|
257 |
+
"eval_runtime": 737.7861,
|
258 |
+
"eval_samples_per_second": 7.059,
|
259 |
+
"eval_wer": 0.3343382104524546,
|
260 |
+
"step": 5400
|
261 |
+
},
|
262 |
+
{
|
263 |
+
"epoch": 25.11,
|
264 |
+
"learning_rate": 5.2773375594294765e-05,
|
265 |
+
"loss": 0.058,
|
266 |
+
"step": 5700
|
267 |
+
},
|
268 |
+
{
|
269 |
+
"epoch": 25.11,
|
270 |
+
"eval_loss": 0.4960506558418274,
|
271 |
+
"eval_runtime": 740.7836,
|
272 |
+
"eval_samples_per_second": 7.03,
|
273 |
+
"eval_wer": 0.3302840510408275,
|
274 |
+
"step": 5700
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"epoch": 26.43,
|
278 |
+
"learning_rate": 3.851030110935023e-05,
|
279 |
+
"loss": 0.0553,
|
280 |
+
"step": 6000
|
281 |
+
},
|
282 |
+
{
|
283 |
+
"epoch": 26.43,
|
284 |
+
"eval_loss": 0.4915299415588379,
|
285 |
+
"eval_runtime": 748.2447,
|
286 |
+
"eval_samples_per_second": 6.96,
|
287 |
+
"eval_wer": 0.32506042256815404,
|
288 |
+
"step": 6000
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"epoch": 27.75,
|
292 |
+
"learning_rate": 2.4247226624405704e-05,
|
293 |
+
"loss": 0.0545,
|
294 |
+
"step": 6300
|
295 |
+
},
|
296 |
+
{
|
297 |
+
"epoch": 27.75,
|
298 |
+
"eval_loss": 0.5011223554611206,
|
299 |
+
"eval_runtime": 762.4791,
|
300 |
+
"eval_samples_per_second": 6.83,
|
301 |
+
"eval_wer": 0.3210062631565269,
|
302 |
+
"step": 6300
|
303 |
+
},
|
304 |
+
{
|
305 |
+
"epoch": 29.07,
|
306 |
+
"learning_rate": 9.984152139461172e-06,
|
307 |
+
"loss": 0.0523,
|
308 |
+
"step": 6600
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"epoch": 29.07,
|
312 |
+
"eval_loss": 0.49885958433151245,
|
313 |
+
"eval_runtime": 743.9824,
|
314 |
+
"eval_samples_per_second": 7.0,
|
315 |
+
"eval_wer": 0.3229034018555576,
|
316 |
+
"step": 6600
|
317 |
+
},
|
318 |
+
{
|
319 |
+
"epoch": 30.0,
|
320 |
+
"step": 6810,
|
321 |
+
"total_flos": 4.998078272539758e+19,
|
322 |
+
"train_runtime": 61300.1017,
|
323 |
+
"train_samples_per_second": 0.111
|
324 |
+
}
|
325 |
+
],
|
326 |
+
"max_steps": 6810,
|
327 |
+
"num_train_epochs": 30,
|
328 |
+
"total_flos": 4.998078272539758e+19,
|
329 |
+
"trial_name": null,
|
330 |
+
"trial_params": null
|
331 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5dbe2c70e4a0a1ea1b9c9db9b598b453f20cf687a2938fc2858cb547981ea9e0
|
3 |
+
size 2351
|
vocab.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"<pad>": 0, "<s>": 1, "</s>": 2, "<unk>": 3, "|": 4, "ء": 5, "آ": 6, "ئ": 7, "ا": 8, "ب": 9, "ت": 10, "ث": 11, "ج": 12, "ح": 13, "خ": 14, "د": 15, "ذ": 16, "ر": 17, "ز": 18, "س": 19, "ش": 20, "ص": 21, "ض": 22, "ط": 23, "ظ": 24, "ع": 25, "غ": 26, "ف": 27, "ق": 28, "ل": 29, "م": 30, "ن": 31, "ه": 32, "و": 33, "پ": 34, "چ": 35, "ژ": 36, "ک": 37, "گ": 38, "ی": 39}
|