File size: 16,208 Bytes
b51625d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
import random
from typing import Optional, Union, Dict, Any, List
from einops import rearrange, repeat
import torch
import math
import PIL.Image
import PIL.ImageSequence
import numpy as np
import PIL
from PIL import Image
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
from transformers import AutoImageProcessor
from transformers.image_transforms import to_channel_dimension_format
from transformers.image_utils import (
ImageInput,
make_list_of_images,
valid_images,
is_torch_tensor,
is_batched,
to_numpy_array,
infer_channel_dimension_format,
ChannelDimension
)
from torchvision.ops.boxes import box_area
from torchvision.transforms import functional as F
from torchvision.transforms.transforms import InterpolationMode
from torchvision import transforms
def recursive_converter(converter, value):
if isinstance(value, list):
new_value = []
for v in value:
new_value += [recursive_converter(converter, v)]
return new_value
else:
return converter(value)
def box_iou(boxes1, area1, boxes2, eps=1e-5):
area2 = box_area(boxes2)
lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
wh = (rb - lt).clamp(min=0) # [N,M,2]
inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
union = area1[:, None] + area2 - inter
iou = inter / (union+eps)
return iou, union
available_anchor_strategy = ['docowl', 'random', 'highest', 'last', 'llava']
grid_dict = {
'grid_33':[
(1,1),
(1,2),(2,1),
(1,3),(3,1),
(2,2),(1,4),(4,1),
(1,5),(5,1),
(1,6),(6,1),(2,3),(3,2),
(1,7),(7,1),
(4,2),(2,4),(1,8),(8,1),
(3,3),(1,9),(9,1)],
'grid_squ_3x3':[
(1,1),(2,2),(3,3)
],
'grid_squ_4':[
(2,2),(1,3),(1,4),(3,1),(4,1)
],
'grid_squ_6':[
(2,2),(1,3),(1,4),(3,1),(4,1), (2,3),(3,2)
],
'grid_squ_2':[
(2,1)
],
'grid_squ_9':[
(1,1),
(1,2),(2,1),
(1,3),(3,1),
(2,2),(1,4),(4,1),
(1,5),(5,1),
(1,6),(6,1),(2,3),(3,2),
(1,7),(7,1),
(4,2),(2,4),(1,8),(8,1),
(3,3),(1,9),(9,1)],
}
cut_prompt_template_dict = {
'v0': lambda img_token, h, w: f''.join([f"{img_token}" for i in range(h) for j in range(w)]),
'v1': lambda img_token, h, w: f'Cut to {h} rows {w} columns, '+ ' '.join([f"subimg({i},{j}){img_token}"for i in range(h) for j in range(w)]),
'v1_global': lambda img_token, h, w: f'Cut to {h} rows {w} columns with a global view, '+ ' '.join([f"subimg({i},{j}){img_token}"for i in range(h) for j in range(w)]+[f"global_view{img_token}"]),
'v2_global': lambda img_token, h, w: f'Cut to {h} rows {w} columns with a global view\n'+ '\n'.join([' '.join([f"subimg({i},{j}){img_token}" for j in range(w)]) for i in range(h)])+f"\nglobal_view{img_token}",
'v3': lambda img_token, h, w: f'<|start_cut|>{h}*{w}'+ ' '.join([f"{img_token}"for i in range(h) for j in range(w)])+'<|end_cut|>',
'v3_global': lambda img_token, h, w: f'<|start_cut|>{h}*{w}\n'+ '\n'.join([' '.join([f"{img_token}" for j in range(w)]) for i in range(h)])+f'\n{img_token}<|end_cut|>',
}
def anchor_rank(anchors, anchors_areas, input_image_size, eps=1e-5):
# anchors x1 y1 x2 y2
# image_size: (h, w)
# xyxy
input_image_bbox = torch.tensor([0, 0, input_image_size[1], input_image_size[0]]).unsqueeze(0)
boxes1 = anchors
boxes2 = input_image_bbox
boxes3 = anchors.clone()
# y2
boxes3[:,3] = input_image_size[0]/input_image_size[1]*anchors[:,2] # 用于算分辨率无关的iou
area1 = anchors_areas
iou, _ = box_iou(boxes1, area1, boxes2)
iou = iou.squeeze(1)
shape_iou, _ = box_iou(boxes1, area1, boxes3)
shape_iou = shape_iou.diag()
# 优先匹配形状接近 再匹配分辨率接近
index = torch.argmax(shape_iou*100+iou,dim=0)
return index
def select_best_resolution(anchors, anchors_areas, input_image_size): # TODO For a futher check
"""
Selects the best resolution from a list of possible resolutions based on the original size.
Args:
original_size (tuple): The original size of the image in the format (width, height).
possible_resolutions (list): A list of possible resolutions in the format [(width1, height1), (width2, height2), ...].
Returns:
tuple: The best fit resolution in the format (width, height).
"""
original_size = (input_image_size[1], input_image_size[0])
possible_resolutions = [(_[2], _[3]) for _ in anchors] # xyxy -> w,h
original_width, original_height = original_size
best_fit = None
max_effective_resolution = 0
min_wasted_resolution = float('inf')
index = 0
for i, (width, height) in enumerate(possible_resolutions):
scale = min(width / original_width, height / original_height)
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
wasted_resolution = (width * height) - effective_resolution
if effective_resolution > max_effective_resolution or (effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
max_effective_resolution = effective_resolution
min_wasted_resolution = wasted_resolution
best_fit = (width, height)
index = i
return index
def build_cut_shape_indices(cut_shape):
# cut_shape: a list of (nh,nw)
cut_shape_indices = []
for shape in cut_shape:
n=shape[0]*shape[1]
indices = torch.cat([
repeat(torch.tensor(shape),'l -> n l',n=n),
torch.arange(n).unsqueeze(1)
], dim=1)
assert indices.shape[0] == n
assert indices.shape[1] == 3 # nh,nw,idx
cut_shape_indices.append(indices)
cut_shape_indices = torch.cat(cut_shape_indices,dim=0).long()
return cut_shape_indices
class AnchorResize(torch.nn.Module):
def __init__(self, image_size, anchors, interpolation=InterpolationMode.BILINEAR, antialias=None, anchor_strategy='docowl'):
super().__init__()
self.image_size = image_size
# xyxy
self.anchors = torch.tensor(
[[0, 0, _[1]*image_size[1], _[0]*image_size[0]]
for _ in anchors], requires_grad=False
)
self.anchor_areas = box_area(self.anchors)
self.interpolation = interpolation
self.antialias = antialias
self.anchor_strategy = anchor_strategy
assert self.anchor_strategy in available_anchor_strategy
def resize_global(self, img):
return F.resize(img, self.image_size, self.interpolation, max_size=None, antialias=self.antialias)
def forward(self, img, skip_resize=False):
"""
Args:
img (PIL Image or Tensor): Image to be scaled.
Returns:
PIL Image or Tensor: Rescaled image.
"""
if self.anchor_strategy == 'docowl':
selected_anchor = anchor_rank(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
elif self.anchor_strategy == 'random':
selected_anchor = random.randint(0,len(self.anchors)-1)
elif self.anchor_strategy == 'highest':
# 选面积最大的 在这个基础上 尽可能选最方正的
selected_anchor = torch.argmax(self.anchors[:,2]*self.anchors[:,3]*100-torch.abs(self.anchors[:,2]-self.anchors[:,3]))
elif self.anchor_strategy == 'last':
selected_anchor = len(self.anchors)-1
elif self.anchor_strategy == 'llava':
selected_anchor = select_best_resolution(self.anchors, self.anchor_areas, (img.size[1], img.size[0]))
else:
selected_anchor = None
assert selected_anchor is not None
target_size = self.anchors[selected_anchor][2:].tolist() # w,h
if skip_resize:
# for debug
return selected_anchor
return F.resize(img, [target_size[1],target_size[0]], self.interpolation, max_size=None, antialias=self.antialias), selected_anchor
def __repr__(self) -> str:
detail = f"(size={self.image_size}, anchor={self.anchors}, interpolation={self.interpolation.value}, antialias={self.antialias})"
return f"{self.__class__.__name__}{detail}"
class CutMixin:
def __init__(self, cut_cfg={"anchors": "grid_squ_6", "anchor_strategy": "docowl", "cut_prompt": "v3", "add_global": True, "cut_prob": 1.0}) -> None:
if cut_cfg is None:
self.cut_enable = False
return
else:
self.cut_enable = True
image_size = self.image_size
anchors = cut_cfg.get('anchors','grid_33')
anchor_strategy = cut_cfg.get('anchor_strategy','docowl')
cut_prompt = cut_cfg.get('cut_prompt','v0')
self.cut_prob = cut_cfg.get('cut_prob', 1.0)
self.force_shape_cut = cut_cfg.get('force_shape_cut', False)
force_shape_cut_anchors = cut_cfg.get('force_shape_cut_anchors', 'force_shape_cut_anchors')
self.add_global = cut_cfg.get('add_global', False)
# h,w
if isinstance(image_size, int):
image_size = (image_size, image_size)
self.image_size = image_size
if anchors in grid_dict:
anchors = grid_dict[anchors]
else:
anchors = eval(anchors)
self.anchors = [tuple(_) for _ in anchors]
self.anchor_max = max([max(_) for _ in self.anchors])
self.resizer = AnchorResize(image_size=image_size, anchors=anchors, interpolation=InterpolationMode.BICUBIC, anchor_strategy=anchor_strategy)
if force_shape_cut_anchors in grid_dict:
force_shape_cut_anchors = grid_dict[force_shape_cut_anchors]
else:
force_shape_cut_anchors = eval(force_shape_cut_anchors)
self.force_shape_cut_anchors = [tuple(_) for _ in force_shape_cut_anchors]
self.force_shape_cut_anchors_max = max([max(_) for _ in self.force_shape_cut_anchors])
self.old_resizer = transforms.Resize(image_size,interpolation=InterpolationMode.BICUBIC)
# 把image processor的缩放去掉 只保留后面的变换
self.image_transform = transforms.Compose(self.image_transform.transforms[1:])
if self.add_global:
self.cut_prompt_template = cut_prompt_template_dict[cut_prompt+'_global']
else:
self.cut_prompt_template = cut_prompt_template_dict[cut_prompt]
self.media_tokens = ["<|image|>", "<|video|>"]
def _process_image(self, images):
new_images = []
cut_shape = []
for image in images:
raw_image = image
image, selected_anchor = self.resizer(image)
image_input = self.image_transform(image) # h,w,3 -> 3,h,w
cut_shape.append((image_input.shape[1]//self.image_size[0], image_input.shape[2]//self.image_size[1])) # cut_h, cut_w
image_input = rearrange(image_input, 'C (num_h h) (num_w w) -> (num_h num_w) C h w', h=self.image_size[0], w=self.image_size[1])
new_images.append(image_input)
if self.add_global:
new_images.append(self.image_transform(self.resizer.resize_global(raw_image)).unsqueeze(0))
cut_shape.append((1,1))
new_images = torch.cat(new_images,dim=0)
cut_shape_indices = build_cut_shape_indices(cut_shape)
return new_images, cut_shape, cut_shape_indices
class mPLUGOwl3BatchFeature(BatchFeature):
r"""
Extend from BatchFeature for supporting various image size
"""
def __init__(self, data: Optional[Dict[str, Any]] = None, tensor_type: Union[None, str, TensorType] = None):
super().__init__(data)
self.convert_to_tensors(tensor_type=tensor_type)
def convert_to_tensors(self, tensor_type: Optional[Union[str, TensorType]] = None):
if tensor_type is None:
return self
is_tensor, as_tensor = self._get_is_as_tensor_fns(tensor_type)
def converter(value):
try:
if not is_tensor(value):
tensor = as_tensor(value)
return tensor
except: # noqa E722
if key == "overflowing_values":
raise ValueError("Unable to create tensor returning overflowing values of different lengths. ")
raise ValueError(
"Unable to create tensor, you should probably activate padding "
"with 'padding=True' to have batched tensors with the same length."
)
for key, value in self.items():
self[key] = recursive_converter(converter, value)
return self
def to(self, *args, **kwargs) -> "mPLUGOwl3BatchFeature":
requires_backends(self, ["torch"])
import torch
def cast_tensor(v):
# check if v is a floating point
if torch.is_floating_point(v):
# cast and send to device
return v.to(*args, **kwargs)
elif device is not None:
return v.to(device=device)
else:
return v
new_data = {}
device = kwargs.get("device")
# Check if the args are a device or a dtype
if device is None and len(args) > 0:
# device should be always the first argument
arg = args[0]
if is_torch_dtype(arg):
# The first argument is a dtype
pass
elif isinstance(arg, str) or is_torch_device(arg) or isinstance(arg, int):
device = arg
else:
# it's something else
raise ValueError(f"Attempting to cast a BatchFeature to type {str(arg)}. This is not supported.")
# We cast only floating point tensors to avoid issues with tokenizers casting `LongTensor` to `FloatTensor`
for k, v in self.items():
new_data[k] = recursive_converter(cast_tensor, v)
self.data = new_data
return self
class mPLUGOwl3ImageProcessor(BaseImageProcessor, CutMixin):
model_input_names = ["pixel_values"]
def __init__(
self,
image_size,
mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
**kwargs):
super().__init__(**kwargs)
self.image_size = image_size
self.image_transform = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=Image.BICUBIC),
transforms.ToTensor(),
transforms.Normalize(mean, std),
])
CutMixin.__init__(self)
def preprocess(
self,
images: Union[Image.Image, List[Image.Image]],
cut_enable=True,
**kwargs
) -> mPLUGOwl3BatchFeature:
if isinstance(images, Image.Image):
images_list = [images]
else:
images_list = images
if self.cut_enable and cut_enable:
image_data, cut_shape, cut_shape_indices = self._process_image(images_list)
else:
image_data = [self.image_transform(self.resizer.resize_global(image)) for image in images_list]
image_data = torch.stack(image_data, dim=0)
cut_shape = cut_shape_indices = None
return mPLUGOwl3BatchFeature(data={'pixel_values': image_data, 'cut_shape':cut_shape, 'cut_shape_indices':cut_shape_indices})
def to_dict(self):
encoder_dict = super().to_dict()
pop_keys = ['image_transform', 'resizer', 'old_resizer', 'cut_prompt_template']
for pk in pop_keys:
encoder_dict.pop(pk, None)
return encoder_dict
AutoImageProcessor.register("mPLUGOwl3ImageProcessor", mPLUGOwl3ImageProcessor)
|