File size: 16,902 Bytes
b51625d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Processor class for mPLUGOwl3.
"""

from typing import List, Optional, Union, Dict, Any
import warnings
import torch
import re

from transformers.image_processing_utils import BatchFeature
from transformers.image_utils import ImageInput
from transformers.processing_utils import ProcessorMixin
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from transformers.utils import TensorType, requires_backends, is_torch_dtype, is_torch_device

from .image_processing_mplugowl3 import mPLUGOwl3BatchFeature, mPLUGOwl3ImageProcessor

OWL_MEDIA_TOKEN=['<|image|>']

class MediaIndicesHelper():
    def __init__(self, tokenizer) -> None:
        self.media_position = []
        self.tokenizer = tokenizer
       
    
    def has_media(self, text, media_tokens=None):
        if media_tokens is None:
            media_tokens = OWL_MEDIA_TOKEN
        has_media_flag = any([media_token == text for media_token in media_tokens])
        if any([media_token in text for media_token in media_tokens]):
            # 不允许出现text中包含media token但是不仅仅是media token。 media token必须单独为一个chunk 
            assert has_media_flag, text
        return has_media_flag
    
    def add_media(self, text_chunk, text=None, tokenize_fn=None):
     
        # cross
        assert tokenize_fn is not None
        assert text is not None
        assert text in OWL_MEDIA_TOKEN
        media_token_ids = tokenize_fn(text)
        start = len(text_chunk)
        end = start + len(media_token_ids)
        self.media_position.append([start, end])
        text_chunk.extend(media_token_ids)
        return len(media_token_ids)

    def cal_media_offset(self, input_ids):
        if len(self.media_position) == 0:
            return torch.ones_like(input_ids)*(-1000000)

        media_starts = torch.tensor([_[0] for _ in self.media_position]).reshape(1,-1)
        rng = torch.arange(input_ids.shape[0]).reshape(-1,1)
        matrix = (rng > media_starts).sum(dim=1)
       
        return matrix
    
    def len_images(self,):
        return len(self.media_position)

class mPLUGOwl3Processor(ProcessorMixin):
    r"""
    Args:
        image_processor ([`mPLUGOwl3ImageProcessor`], *optional*):
            The image processor is a required input.
        tokenizer ([`LlamaTokenizerWrapper`], *optional*):
            The tokenizer is a required input.
    """
    attributes = ["image_processor", "tokenizer"]
    image_processor_class = "AutoImageProcessor"
    tokenizer_class = "AutoTokenizer"

    def __init__(self, image_processor: mPLUGOwl3ImageProcessor = None, tokenizer=None, prompt_style='chatml', inference_mode=True, addition_eod="<|endoftext|>"):
        super().__init__(image_processor, tokenizer)
        self.image_processor: mPLUGOwl3ImageProcessor
        self.prompt_style = prompt_style
        self.inference_mode = inference_mode
        self.media_tokens = ["<|image|>"]
        self.addition_eod = addition_eod

    def build_text_qwen(self, messages):
        # role should be within ['system', 'user', 'assistant']
        im_start, im_end = '<|im_start|>', '<|im_end|>'
  
        text = []
        for num_turn, message in enumerate(messages):
            if num_turn == 0 and message['role'] != 'system':
                if self.prompt_style != 'plain':
                    text.append({
                        "text": f"{im_start}system\n{im_end}",
                        "label": 0
                    })
            if message['role'] == 'system':
                if self.prompt_style != 'plain':
                    text.append({
                        "text": f"{im_start}system\n{message['content']}{im_end}",
                        "label": 0
                    })
            elif message['role'] == 'user':
                if self.prompt_style != 'plain':
                    content = f"\n{im_start}user\n{message['content']}{im_end}"
                else:
                    content = message['content']
                pattern = '|'.join(map(re.escape, self.media_tokens))
                chunk_strs = re.split(f'({pattern})', content)
                for chunk_str in chunk_strs:
                    text.append({
                        "text": chunk_str,
                        "label": 0
                    })
             
            elif message['role'] == 'assistant':
                if self.prompt_style != 'plain':
                    text.append({"text": f"\n{im_start}assistant\n", "label": 0})
                    text.append({"text": f"{message['content']}{im_end}", "label": 1})
                else:
                    text.append({"text": f"{message['content']}", "label": 1})
                text.append({"text": self.addition_eod, "label": 1})
            else:
                raise NotImplementedError
        if self.inference_mode:
            while text and text[-1]['label']==1:  # 只要列表非空且最后一个元素满足条件
                text.pop()  # 就移除最后一个元素
        return text

    def wrapped_tokenize(self, text):
        return self.tokenizer(text).input_ids

    def encode_text_sft(self, texts):
        # output enc_chunk
   
        enc_chunk = []
        label_chunk = []
        enc_length = 0

        num_images = 0

        media_helper = MediaIndicesHelper(tokenizer=self.tokenizer)
        for current_ti, text_chunk in enumerate(texts):
           
            text = text_chunk["text"]
            label = text_chunk["label"]

            if not media_helper.has_media(text):
                curr_chunk=self.wrapped_tokenize(text)
                if label == 1:
                    enc_length += len(curr_chunk)
                    enc_chunk += curr_chunk
                    label_chunk += [label] * len(curr_chunk)
                else:
                   
                    enc_length += len(curr_chunk)
                    enc_chunk += curr_chunk
                    label_chunk += [label] * len(curr_chunk)
            # For media tokens
            else:
               
                add_length = media_helper.add_media(
                    enc_chunk, 
                    text=text, 
                    tokenize_fn=self.wrapped_tokenize)
                enc_length += add_length
                label_chunk += [label] * add_length
                # enc_chunk.extend([self.media_tokens[text]] * self.media_lengths[text])
                # enc_length += self.media_lengths[text]
                # label_chunk += [label] * self.media_lengths[text]
                num_images += 1

        enc_chunk = torch.tensor(enc_chunk).long()
        media_offset = []
        media_before = 0
        for i,_ in enumerate([media_helper]):
            mo = _.cal_media_offset(enc_chunk)
            media_offset.append(torch.cat([(torch.ones(mo.shape[0],1)*media_before).long().to(mo.device), (mo+media_before).unsqueeze(1)], dim=1)) # L 2

            media_before += _.len_images()
        media_offset = torch.stack(media_offset, dim=0)
        return {
            'input_ids': enc_chunk.unsqueeze(0), 
            'media_offset': media_offset,
        }


    def __call__(
        self,
        messages,
        images = None,
        videos = None,
        max_length: Optional[int] = None,
        cut_enable=True,
        return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
        **kwargs
    ) -> mPLUGOwl3BatchFeature:
        medias = []
        if videos is not None:
            medias.extend([{'type': 'video', 'content': video, 'use_video_span': True} for video in videos])
        if images is not None:
            medias.extend([{'type':'image', 'content': image}  for image in images])
            
        if len(medias):
            image_tensor_list = []
            pattern = r"(<\|image\|>|<\|video\|>)"
            # 存在媒体
            image_token_ptr = 0
            media_layout = []
            for message in messages:
                text_list = re.split(pattern, message['content'])
                text = ''
                for text_content in text_list:
                    if text_content in ['<|image|>', '<|video|>']:
                        media_item = medias[image_token_ptr]
                        image_token_ptr += 1
                        if text_content == '<|image|>':
                            assert media_item['type'] == 'image'
                            image = media_item['content']

                            image_inputs = self.image_processor([image], cut_enable=cut_enable, return_tensors=return_tensors)
                            if image_inputs.get('cut_shape',None) is not None:
                                cut_shape = image_inputs['cut_shape']
                                cut_text = self.image_processor.cut_prompt_template(img_token='<|image|>', h=cut_shape[0][0], w=cut_shape[0][1])
                                text += cut_text
                                image_tensor_list.append(image_inputs['pixel_values'])
                            else:
                                text += text_content
                        elif text_content == '<|video|>':
                            assert media_item['type'] == 'video'
                            video = media_item['content']
                            use_video_span = media_item['use_video_span']
                            image_tensor = self.image_processor(video, cut_enable=False)['pixel_values']
                            image_tensor_list.append(image_tensor)
                            num_video_frame = image_tensor.shape[0]
                            if use_video_span:
                                text_content = '<|start_video_frame|>'+'<|image|>'*num_video_frame+'<|end_video_frame|>'
                            else:
                                text_content = '<|image|>'*num_video_frame
                            text += text_content
                    else:
                        text += text_content
                message['content'] = text
            assert image_token_ptr == len(medias), (image_token_ptr,len(medias)) # 保证图和token数目一致
            assert all(len(_.shape) == 4 for _ in image_tensor_list), [_.shape for _ in image_tensor_list]
            num_image_tokens = sum([_['content'].count('<|image|>')for _ in messages])
            num_image_shapes = sum([_.shape[0] for _ in image_tensor_list])
            assert num_image_tokens == num_image_shapes, (messages, [_.shape for _ in image_tensor_list])

        image_tensor_list = torch.cat(image_tensor_list, dim=0)
        
        # text = ''.join([_['text'] for _ in text])
        text = self.build_text_qwen(messages)
        model_inputs = self.encode_text_sft(text)
        
        if len(medias) is not None:
            model_inputs.update({'pixel_values': image_tensor_list})
            # if 'cut_shape' in model_inputs:
            #     model_inputs.pop('cut_shape')
            # if 'cut_shape_indices' in model_inputs:
            #     model_inputs.pop('cut_shape_indices')
        return mPLUGOwl3BatchFeature(model_inputs)
    
    def check_media(self, images, messages):
        media_num = 0 if images is None else len(images)
        media_count = sum([message['content'].count('<|image|>') for message in messages])
        assert media_num == media_count


    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Llama
    def batch_decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
        refer to the docstring of this method for more information.
        """
        output_ids = args[0]
        result_text = []
        for result in output_ids:
            result = result[result != 0]
            if result[0] == self.tokenizer.bos_id:
                result = result[1:]
            if result[-1] == self.tokenizer.eos_id:
                result = result[:-1]
            result_text.append(self.tokenizer.decode(result, *args[1:], **kwargs).strip())
        return result_text
        # return self.tokenizer.batch_decode(*args, **kwargs)
    
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Llama
    def decode(self, *args, **kwargs):
        """
        This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
        the docstring of this method for more information.
        """
        result = args[0]
        result = result[result != 0]
        if result[0] == self.tokenizer.bos_id:
            result = result[1:]
        if result[-1] == self.tokenizer.eos_id or (hasattr(self.tokenizer, "eot_id") and result[-1] == self.tokenizer.eot_id):
            result = result[:-1]
        return self.tokenizer.decode(result, *args[1:], **kwargs).strip()

    def _convert(
        self, input_str, max_inp_length: Optional[int] = None
    ):
        if self.version > 2.5 or not getattr(self.tokenizer, "add_bos_token", False):
            input_ids = self.tokenizer.encode(input_str)
        else:
            input_ids = [self.tokenizer.bos_id] + self.tokenizer.encode(input_str)
        if max_inp_length is not None:
            input_ids = input_ids[:max_inp_length]
        input_ids = torch.tensor(input_ids, dtype=torch.int32)

        start_cond = (input_ids == self.tokenizer.im_start_id) | (input_ids == self.tokenizer.slice_start_id)
        end_cond = (input_ids == self.tokenizer.im_end_id) | (input_ids == self.tokenizer.slice_end_id)

        image_start_tokens = torch.where(start_cond)[0]
        image_start_tokens += 1
        image_end_tokens = torch.where(end_cond)[0]

        valid_image_nums = max(len(image_start_tokens), len(image_end_tokens))

        image_bounds = torch.hstack(
            [
                image_start_tokens[:valid_image_nums].unsqueeze(-1),
                image_end_tokens[:valid_image_nums].unsqueeze(-1),
            ]
        )
        return input_ids, image_bounds

   
    @property
    # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names
    def model_input_names(self):
        tokenizer_input_names = self.tokenizer.model_input_names
        image_processor_input_names = self.image_processor.model_input_names
        return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))


    def pad(self, inputs, max_length=None, padding_value=0, padding_side="left"):
        items = []
        if isinstance(inputs[0], list):
            assert isinstance(inputs[0][0], torch.Tensor)
            for it in inputs:
                for tr in it:
                    items.append(tr)
        else:
            assert isinstance(inputs[0], torch.Tensor)
            items = inputs

        batch_size = len(items)
        shape = items[0].shape
        dim = len(shape)
        assert dim <= 2
        if max_length is None:
            max_length = 0
        max_length = max(max_length, max(item.shape[-1] for item in items))
        min_length = min(item.shape[-1] for item in items)
        dtype = items[0].dtype

        if dim == 0:
            return torch.stack([item for item in items], dim=0), [0]
        elif dim == 1:
            if max_length == min_length:
                return torch.stack([item for item in items], dim=0), [0] * batch_size
            tensor = torch.zeros((batch_size, max_length), dtype=dtype) + padding_value
        else:
            tensor = (
                torch.zeros((batch_size, max_length, shape[-1]), dtype=dtype)
                + padding_value
            )

        padding_length = []
        for i, item in enumerate(items):
            if dim == 1:
                if padding_side == "left":
                    tensor[i, -len(item) :] = item.clone()
                else:
                    tensor[i, : len(item)] = item.clone()
            elif dim == 2:
                if padding_side == "left":
                    tensor[i, -len(item) :, :] = item.clone()
                else:
                    tensor[i, : len(item), :] = item.clone()
            padding_length.append(tensor.shape[-1] - len(item))

        return tensor, padding_length