Update README.md
Browse files
README.md
CHANGED
@@ -34,17 +34,6 @@ pipeline_tag: summarization
|
|
34 |
|
35 |
# t5_xsum_samsum_billsum_cnn_dailymail
|
36 |
|
37 |
-
This model was trained from scratch on the cnn_dailymail dataset.
|
38 |
-
It achieves the following results on the evaluation set:
|
39 |
-
- Loss: 1.6478
|
40 |
-
- Rouge1: 0.2373
|
41 |
-
- Rouge2: 0.1086
|
42 |
-
- Rougel: 0.1972
|
43 |
-
- Rougelsum: 0.1971
|
44 |
-
- Gen Len: 18.9674
|
45 |
-
|
46 |
-
# t5_xsum_samsum_billsum_cnn_dailymail
|
47 |
-
|
48 |
The `t5_xsum_samsum_billsum_cnn_dailymail` model is a text summarization model fine-tuned on the `t5-base` architecture, which is a versatile text-to-text transfer transformer. This powerful model excels at generating abstractive summaries from input text. It has been fine-tuned on multiple datasets, including CNN/Daily Mail (cnn_dailymail), XSum (xsum), SamSum (samsum), BillSum (billsum), and the MeetingBank-transcript dataset by lytang.
|
49 |
|
50 |
## Intended Uses & Limitations
|
@@ -76,6 +65,15 @@ The following hyperparameters were used during training:
|
|
76 |
|
77 |
### Training results
|
78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
80 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
81 |
| 1.8486 | 1.0 | 32300 | 1.6478 | 0.2373 | 0.1086 | 0.1972 | 0.1971 | 18.9674 |
|
|
|
34 |
|
35 |
# t5_xsum_samsum_billsum_cnn_dailymail
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
The `t5_xsum_samsum_billsum_cnn_dailymail` model is a text summarization model fine-tuned on the `t5-base` architecture, which is a versatile text-to-text transfer transformer. This powerful model excels at generating abstractive summaries from input text. It has been fine-tuned on multiple datasets, including CNN/Daily Mail (cnn_dailymail), XSum (xsum), SamSum (samsum), BillSum (billsum), and the MeetingBank-transcript dataset by lytang.
|
38 |
|
39 |
## Intended Uses & Limitations
|
|
|
65 |
|
66 |
### Training results
|
67 |
|
68 |
+
#### samsum
|
69 |
+
|
70 |
+
| Rouge1 | Rouge2 | RougeL | RougeLsum |
|
71 |
+
|:-------:|:-------:|:-------:|:---------:|
|
72 |
+
| 0.0138 | 0.0002 | 0.0138 | 0.0138 |
|
73 |
+
|
74 |
+
|
75 |
+
#### CNN_Dailymail
|
76 |
+
|
77 |
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|
78 |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
|
79 |
| 1.8486 | 1.0 | 32300 | 1.6478 | 0.2373 | 0.1086 | 0.1972 | 0.1971 | 18.9674 |
|