magus4450 commited on
Commit
904dcdf
1 Parent(s): bb69602

End of training

Browse files
Files changed (1) hide show
  1. README.md +83 -0
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: bsd-3-clause
3
+ base_model: MIT/ast-finetuned-audioset-10-10-0.450
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: ast-finetuned-audioset-10-10-0.450-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.89
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # ast-finetuned-audioset-10-10-0.450-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.450](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.450) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.5513
36
+ - Accuracy: 0.89
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 2
57
+ - eval_batch_size: 2
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 4
60
+ - total_train_batch_size: 8
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 5
65
+ - mixed_precision_training: Native AMP
66
+
67
+ ### Training results
68
+
69
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
70
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
71
+ | 0.4812 | 1.0 | 100 | 0.4780 | 0.86 |
72
+ | 0.4555 | 2.0 | 200 | 0.6969 | 0.795 |
73
+ | 0.106 | 3.0 | 300 | 0.6725 | 0.85 |
74
+ | 0.0063 | 4.0 | 400 | 0.5885 | 0.875 |
75
+ | 0.0004 | 5.0 | 500 | 0.5513 | 0.89 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.35.2
81
+ - Pytorch 2.1.2
82
+ - Datasets 2.14.7
83
+ - Tokenizers 0.15.0