File size: 18,913 Bytes
efd83be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 |
from dataclasses import dataclass
from transformers.models.t5.modeling_t5 import (
T5Stack, T5Block, T5LayerNorm, T5LayerSelfAttention, T5LayerFF, T5LayerCrossAttention,
T5PreTrainedModel, T5ForConditionalGeneration
)
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from typing import Any, Callable, Dict, Iterable, List, Optional, Tuple
import copy
from transformers.modeling_outputs import ModelOutput, BaseModelOutput, BaseModelOutputWithPast, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput
from transformers.modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
from transformers.utils import logging
from transformers import BeamScorer, BeamSearchScorer
logger = logging.get_logger(__name__)
# The encoder for input token sequence
class JointEncoder(T5Stack):
def __init__(self, config, embed_tokens=None):
super(T5Stack, self).__init__(config)
self.config = config
self.embed_tokens = embed_tokens
self.is_decoder = self.config.is_decoder
assert self.config.is_decoder is False
self.block = nn.ModuleList(
[T5Block(config, has_relative_attention_bias=(i == 0))
for i in range(config.num_layers)]
)
self.final_layer_norm = T5LayerNorm(
config.d_model, eps=config.layer_norm_epsilon)
self.dropout = nn.Dropout(config.dropout_rate)
## Set maximum 512 whole words in a source text
self.whole_word_embeddings = nn.Embedding(
512, config.d_model ## config.d_model is 768 for base
)
self.init_weights()
self.model_parallel = False
self.device_map = None
def set_input_embeddings(self, new_embeddings):
self.embed_tokens = new_embeddings
def forward(
self,
input_ids=None,
whole_word_ids=None,
attention_mask=None,
inputs_embeds=None,
head_mask=None,
past_key_values=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
if inputs_embeds is None:
assert self.embed_tokens is not None, "You have to initialize the model with valid token embeddings"
inputs_embeds = self.embed_tokens(input_ids) ### embedding step - add HERE ###
if whole_word_ids is not None:
whole_word_embeds = self.whole_word_embeddings(whole_word_ids)
assert whole_word_embeds.shape[-1] == inputs_embeds.shape[-1]
inputs_embeds = inputs_embeds + whole_word_embeds
B, L = inputs_embeds.size()[:-1]
if attention_mask is None:
attention_mask = input_ids.ne(self.config.pad_token_id).to(dtype=inputs_embeds.dtype, device=inputs_embeds.device)
# ourselves in which case we just need to make it broadcastable to all heads.
extended_attention_mask = self.get_extended_attention_mask(
attention_mask,
(B, L),
inputs_embeds.device)
# initialize past_key_values with `None` if past does not exist
if past_key_values is None:
past_key_values = [None] * len(self.block)
# Prepare head mask if needed
head_mask = self.get_head_mask(head_mask, self.config.num_layers)
present_key_value_states = () if use_cache else None
all_hidden_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
all_cross_attentions = () if (output_attentions and self.is_decoder) else None
hidden_states = self.dropout(inputs_embeds)
if self.config.num_layers > 0:
assert self.block[0].layer[0].SelfAttention.has_relative_attention_bias
seq_length = L
q_len = seq_length
k_len = seq_length
# [1, n_heads, Q_len, K_len]
text_position_bias = self.block[0].layer[0].SelfAttention.compute_bias(
L, L)
num_heads = text_position_bias.size(1)
position_bias = text_position_bias.new_zeros(
1, num_heads, seq_length, seq_length)
position_bias[:, :, :L, :L] = text_position_bias
position_bias = position_bias + extended_attention_mask
for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)):
layer_head_mask = head_mask[i]
layer_outputs = layer_module(
hidden_states,
attention_mask=extended_attention_mask,
position_bias=position_bias,
encoder_hidden_states=None,
encoder_attention_mask=None,
encoder_decoder_position_bias=None,
# head_mask=head_mask[i],
layer_head_mask=layer_head_mask,
past_key_value=past_key_value,
use_cache=use_cache,
output_attentions=output_attentions,
)
# layer_outputs is a tuple with:
# hidden-states, key-value-states, (self-attention weights), (self-attention position bias), (cross-attention weights), (cross-attention position bias)
hidden_states, present_key_value_state = layer_outputs[:2]
# We share the position biases between the layers - the first layer store them
# layer_outputs = hidden-states, key-value-states (self-attention weights),
# (self-attention position bias), (cross-attention weights), (cross-attention position bias)
# position_bias = layer_outputs[2]
# append next layer key value states
if use_cache:
present_key_value_states = present_key_value_states + \
(present_key_value_state,)
hidden_states = self.final_layer_norm(hidden_states)
hidden_states = self.dropout(hidden_states)
# Add last layer
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(
v
for v in [
hidden_states,
present_key_value_states,
all_hidden_states,
all_attentions,
all_cross_attentions,
]
if v is not None
)
return BaseModelOutputWithPastAndCrossAttentions(
last_hidden_state=hidden_states,
past_key_values=present_key_value_states,
hidden_states=all_hidden_states,
attentions=all_attentions,
cross_attentions=all_cross_attentions,
)
class P5(T5ForConditionalGeneration):
_keys_to_ignore_on_load_missing = [
r"encoder\.embed_tokens\.weight",
r"decoder\.embed_tokens\.weight",
r"lm_head\.weight",
]
_keys_to_ignore_on_load_unexpected = [
r"decoder\.block\.0\.layer\.1\.EncDecAttention\.relative_attention_bias\.weight",
]
def __init__(self, config):
super(T5ForConditionalGeneration, self).__init__(config)
self.config = config
self.model_dim = config.d_model
self.shared = nn.Embedding(config.vocab_size, config.d_model)
encoder_config = copy.deepcopy(config)
encoder_config.is_decoder = False
encoder_config.use_cache = False
encoder_config.is_encoder_decoder = False
self.encoder = JointEncoder(encoder_config, self.shared)
decoder_config = copy.deepcopy(config)
decoder_config.is_decoder = True
decoder_config.is_encoder_decoder = False
self.decoder = T5Stack(decoder_config, self.shared)
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
self.init_weights()
self.model_parallel = False
self.device_map = None
def set_input_embeddings(self, new_embeddings):
self.shared = new_embeddings
self.encoder.set_input_embeddings(new_embeddings)
self.decoder.set_input_embeddings(new_embeddings)
def extend_vocab(self, vocab_size):
new_shared = nn.Embedding(vocab_size, self.config.d_model)
old_weight = self.shared.weight.data.detach().clone()
old_vocab_size = old_weight.size(0)
new_shared.weight.data[:old_vocab_size, :] = old_weight
self.shared = new_shared
new_lm_head = nn.Linear(self.config.d_model, vocab_size, bias=False)
old_weight = self.lm_head.weight.data.detach().clone()
old_vocab_size = old_weight.size(0)
new_lm_head.weight.data[:old_vocab_size, :] = old_weight
self.lm_head = new_lm_head
self.encoder.embed_tokens = self.shared
self.decoder.embed_tokens = self.shared
self.lm_head.weight = self.shared.weight
self.config.vocab_size = vocab_size
self.encoder.config.vocab_size = vocab_size
self.decoder.config.vocab_size = vocab_size
def forward(
self,
input_ids=None,
whole_word_ids=None,
attention_mask=None,
encoder_outputs=None,
decoder_input_ids=None,
decoder_attention_mask=None,
past_key_values=None,
use_cache=None,
labels=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
head_mask=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
reduce_loss=False,
return_hidden_state=False,
**kwargs,
):
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
whole_word_ids=whole_word_ids,
attention_mask=attention_mask,
inputs_embeds=inputs_embeds,
head_mask=head_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(
encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(
encoder_outputs) > 2 else None,
)
hidden_states = encoder_outputs[0]
if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None:
# get decoder inputs from shifting lm labels to the right
decoder_input_ids = self._shift_right(labels)
# If decoding with past key value states, only the last tokens
# should be given as an input
if past_key_values is not None:
assert labels is None, "Decoder should not use cached key value states when training."
if decoder_input_ids is not None:
decoder_input_ids = decoder_input_ids[:, -1:]
if decoder_inputs_embeds is not None:
decoder_inputs_embeds = decoder_inputs_embeds[:, -1:]
if attention_mask is None:
attention_mask = input_ids.ne(self.config.pad_token_id).to(dtype=hidden_states.dtype, device=hidden_states.device)
encoder_attention_mask = attention_mask
# Decode
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
inputs_embeds=decoder_inputs_embeds,
past_key_values=past_key_values,
encoder_hidden_states=hidden_states,
encoder_attention_mask=encoder_attention_mask,
head_mask=head_mask,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = decoder_outputs[0]
assert self.config.tie_word_embeddings is True
if self.config.tie_word_embeddings:
sequence_output = sequence_output * (self.model_dim ** -0.5)
if return_hidden_state:
return sequence_output
lm_logits = self.lm_head(sequence_output)
loss = None
if labels is not None:
if reduce_loss:
loss_fct = CrossEntropyLoss(ignore_index=-100)
else:
loss_fct = CrossEntropyLoss(ignore_index=-100, reduction='none')
loss = loss_fct(
lm_logits.view(-1, lm_logits.size(-1)),
labels.view(-1))
return P5Seq2SeqLMOutput(
loss=loss,
logits=lm_logits,
past_key_values=decoder_outputs.past_key_values,
decoder_last_hidden_state=decoder_outputs.last_hidden_state,
decoder_hidden_states=decoder_outputs.hidden_states,
)
def prepare_inputs_for_generation(
self, input_ids, past=None, attention_mask=None, use_cache=None,
encoder_outputs=None,
**kwargs):
if past is not None:
input_ids = input_ids[:, -1:]
output = {
"decoder_input_ids": input_ids,
"past_key_values": past,
"encoder_outputs": encoder_outputs,
"attention_mask": attention_mask,
"use_cache": use_cache,
}
return output
@staticmethod
def _expand_inputs_for_generation(
input_ids: torch.LongTensor,
expand_size: int = 1,
is_encoder_decoder: bool = False,
attention_mask: torch.LongTensor = None,
encoder_outputs: ModelOutput = None,
**model_kwargs
) -> Tuple[torch.LongTensor, Dict[str, Any]]:
expanded_return_idx = (
torch.arange(input_ids.shape[0]).view(-1, 1).repeat(1,
expand_size).view(-1).to(input_ids.device)
)
input_ids = input_ids.index_select(0, expanded_return_idx)
if "token_type_ids" in model_kwargs:
token_type_ids = model_kwargs["token_type_ids"]
model_kwargs["token_type_ids"] = token_type_ids.index_select(
0, expanded_return_idx)
if attention_mask is not None:
model_kwargs["attention_mask"] = attention_mask.index_select(
0, expanded_return_idx)
if is_encoder_decoder:
assert encoder_outputs is not None
encoder_outputs["last_hidden_state"] = encoder_outputs.last_hidden_state.index_select(
0, expanded_return_idx
)
model_kwargs["encoder_outputs"] = encoder_outputs
return input_ids, model_kwargs
@dataclass
class P5Seq2SeqLMOutput(ModelOutput):
"""
Base class for sequence-to-sequence language models outputs.
Args:
loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
Languaged modeling loss.
logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
past_key_values (:obj:`List[torch.FloatTensor]`, `optional`, returned when ``use_cache=True`` is passed or when ``config.use_cache=True``):
List of :obj:`torch.FloatTensor` of length :obj:`config.n_layers`, with each tensor of shape
:obj:`(2, batch_size, num_heads, sequence_length, embed_size_per_head)`).
Contains pre-computed hidden-states (key and values in the attention blocks) of the decoder that can be
used (see ``past_key_values`` input) to speed up sequential decoding.
decoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the decoder at the output of each layer plus the initial embedding outputs.
decoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights of the decoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
encoder_last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`):
Sequence of hidden-states at the output of the last layer of the encoder of the model.
encoder_hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
of shape :obj:`(batch_size, sequence_length, hidden_size)`.
Hidden-states of the encoder at the output of each layer plus the initial embedding outputs.
encoder_attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
:obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
Attentions weights of the encoder, after the attention softmax, used to compute the weighted average in the
self-attention heads.
"""
loss: Optional[torch.FloatTensor] = None
logits: torch.FloatTensor = None
past_key_values: Optional[List[torch.FloatTensor]] = None
decoder_last_hidden_state: Optional[Tuple[torch.FloatTensor]] = None
decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
encoder_last_hidden_state: Optional[torch.FloatTensor] = None
encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None
encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None
|