aisyahhrazak
commited on
Commit
•
ca1c7d7
1
Parent(s):
113257f
Upload 3 files
Browse files- attn_mask_utils.py +160 -0
- bidirectional_mistral.py +281 -0
- classifier.py +88 -0
attn_mask_utils.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
4 |
+
|
5 |
+
|
6 |
+
def _prepare_4d_causal_attention_mask(
|
7 |
+
attention_mask: Optional[torch.Tensor],
|
8 |
+
input_shape: Union[torch.Size, Tuple, List],
|
9 |
+
inputs_embeds: torch.Tensor,
|
10 |
+
past_key_values_length: int,
|
11 |
+
sliding_window: Optional[int] = None,
|
12 |
+
):
|
13 |
+
"""
|
14 |
+
Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape
|
15 |
+
`(batch_size, key_value_length)`
|
16 |
+
|
17 |
+
Args:
|
18 |
+
attention_mask (`torch.Tensor` or `None`):
|
19 |
+
A 2D attention mask of shape `(batch_size, key_value_length)`
|
20 |
+
input_shape (`tuple(int)` or `list(int)` or `torch.Size`):
|
21 |
+
The input shape should be a tuple that defines `(batch_size, query_length)`.
|
22 |
+
inputs_embeds (`torch.Tensor`):
|
23 |
+
The embedded inputs as a torch Tensor.
|
24 |
+
past_key_values_length (`int`):
|
25 |
+
The length of the key value cache.
|
26 |
+
sliding_window (`int`, *optional*):
|
27 |
+
If the model uses windowed attention, a sliding window should be passed.
|
28 |
+
"""
|
29 |
+
attn_mask_converter = AttentionMaskConverter(
|
30 |
+
is_causal=False, sliding_window=sliding_window
|
31 |
+
) # is_causal=True in original implementation
|
32 |
+
|
33 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
34 |
+
|
35 |
+
# 4d mask is passed through the layers
|
36 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
37 |
+
attention_mask = attn_mask_converter.to_4d(
|
38 |
+
attention_mask,
|
39 |
+
input_shape[-1],
|
40 |
+
key_value_length=key_value_length,
|
41 |
+
dtype=inputs_embeds.dtype,
|
42 |
+
)
|
43 |
+
elif attention_mask is not None and len(attention_mask.shape) == 4:
|
44 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
45 |
+
if tuple(attention_mask.shape) != expected_shape:
|
46 |
+
raise ValueError(
|
47 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
48 |
+
)
|
49 |
+
else:
|
50 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
51 |
+
inverted_mask = 1.0 - attention_mask
|
52 |
+
attention_mask = inverted_mask.masked_fill(
|
53 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
54 |
+
)
|
55 |
+
else:
|
56 |
+
attention_mask = attn_mask_converter.to_causal_4d(
|
57 |
+
input_shape[0],
|
58 |
+
input_shape[-1],
|
59 |
+
key_value_length,
|
60 |
+
dtype=inputs_embeds.dtype,
|
61 |
+
device=inputs_embeds.device,
|
62 |
+
)
|
63 |
+
|
64 |
+
return attention_mask
|
65 |
+
|
66 |
+
|
67 |
+
# Adapted from _prepare_4d_causal_attention_mask
|
68 |
+
def _prepare_4d_causal_attention_mask_for_sdpa(
|
69 |
+
attention_mask: Optional[torch.Tensor],
|
70 |
+
input_shape: Union[torch.Size, Tuple, List],
|
71 |
+
inputs_embeds: torch.Tensor,
|
72 |
+
past_key_values_length: int,
|
73 |
+
sliding_window: Optional[int] = None,
|
74 |
+
):
|
75 |
+
"""
|
76 |
+
Prepares the correct `attn_mask` argument to be used by `torch.nn.functional.scaled_dot_product_attention`.
|
77 |
+
|
78 |
+
In case no token is masked in the `attention_mask` argument, we simply set it to `None` for the cases `query_length == 1` and
|
79 |
+
`key_value_length == query_length`, and rely instead on SDPA `is_causal` argument to use causal/non-causal masks,
|
80 |
+
allowing to dispatch to the flash attention kernel (that can otherwise not be used if a custom `attn_mask` is passed).
|
81 |
+
"""
|
82 |
+
attn_mask_converter = AttentionMaskConverter(
|
83 |
+
is_causal=False, sliding_window=sliding_window
|
84 |
+
) # is_causal=True in original implementation
|
85 |
+
|
86 |
+
key_value_length = input_shape[-1] + past_key_values_length
|
87 |
+
batch_size, query_length = input_shape
|
88 |
+
|
89 |
+
# torch.jit.trace, symbolic_trace and torchdynamo with fullgraph=True are unable to capture the controlflow `is_causal=attention_mask is None and q_len > 1`
|
90 |
+
# used as an SDPA argument. We keep compatibility with these tracing tools by always using SDPA's `attn_mask` argument in case we are tracing.
|
91 |
+
# TODO: For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
92 |
+
is_tracing = (
|
93 |
+
torch.jit.is_tracing()
|
94 |
+
or isinstance(inputs_embeds, torch.fx.Proxy)
|
95 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
96 |
+
)
|
97 |
+
|
98 |
+
if attention_mask is not None:
|
99 |
+
# 4d mask is passed through
|
100 |
+
if len(attention_mask.shape) == 4:
|
101 |
+
expected_shape = (input_shape[0], 1, input_shape[1], key_value_length)
|
102 |
+
if tuple(attention_mask.shape) != expected_shape:
|
103 |
+
raise ValueError(
|
104 |
+
f"Incorrect 4D attention_mask shape: {tuple(attention_mask.shape)}; expected: {expected_shape}."
|
105 |
+
)
|
106 |
+
else:
|
107 |
+
# if the 4D mask has correct shape - invert it and fill with negative infinity
|
108 |
+
inverted_mask = 1.0 - attention_mask.to(inputs_embeds.dtype)
|
109 |
+
attention_mask = inverted_mask.masked_fill(
|
110 |
+
inverted_mask.to(torch.bool), torch.finfo(inputs_embeds.dtype).min
|
111 |
+
)
|
112 |
+
return attention_mask
|
113 |
+
|
114 |
+
elif not is_tracing and torch.all(attention_mask == 1):
|
115 |
+
if query_length == 1:
|
116 |
+
# For query_length == 1, causal attention and bi-directional attention are the same.
|
117 |
+
attention_mask = None
|
118 |
+
elif key_value_length == query_length:
|
119 |
+
attention_mask = None
|
120 |
+
else:
|
121 |
+
# Unfortunately, for query_length > 1 and key_value_length != query_length, we cannot generally ignore the attention mask, as SDPA causal mask generation
|
122 |
+
# may be wrong. We will set `is_causal=False` in SDPA and rely on Transformers attention_mask instead, hence not setting it to None here.
|
123 |
+
# Reference: https://github.com/pytorch/pytorch/issues/108108
|
124 |
+
pass
|
125 |
+
elif query_length > 1 and key_value_length != query_length:
|
126 |
+
# See the comment above (https://github.com/pytorch/pytorch/issues/108108).
|
127 |
+
# Ugly: we set it to True here to dispatch in the following controlflow to `to_causal_4d`.
|
128 |
+
attention_mask = True
|
129 |
+
elif is_tracing:
|
130 |
+
raise ValueError(
|
131 |
+
'Attention using SDPA can not be traced with torch.jit.trace when no attention_mask is provided. To solve this issue, please either load your model with the argument `attn_implementation="eager"` or pass an attention_mask input when tracing the model.'
|
132 |
+
)
|
133 |
+
|
134 |
+
if attention_mask is None:
|
135 |
+
expanded_4d_mask = None
|
136 |
+
elif attention_mask is True:
|
137 |
+
expanded_4d_mask = attn_mask_converter.to_causal_4d(
|
138 |
+
input_shape[0],
|
139 |
+
input_shape[-1],
|
140 |
+
key_value_length,
|
141 |
+
dtype=inputs_embeds.dtype,
|
142 |
+
device=inputs_embeds.device,
|
143 |
+
)
|
144 |
+
else:
|
145 |
+
expanded_4d_mask = attn_mask_converter.to_4d(
|
146 |
+
attention_mask,
|
147 |
+
input_shape[-1],
|
148 |
+
dtype=inputs_embeds.dtype,
|
149 |
+
key_value_length=key_value_length,
|
150 |
+
)
|
151 |
+
|
152 |
+
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
|
153 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
154 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
155 |
+
if not is_tracing and expanded_4d_mask.device.type == "cuda":
|
156 |
+
expanded_4d_mask = AttentionMaskConverter._unmask_unattended(
|
157 |
+
expanded_4d_mask, min_dtype=torch.finfo(inputs_embeds.dtype).min
|
158 |
+
)
|
159 |
+
|
160 |
+
return expanded_4d_mask
|
bidirectional_mistral.py
ADDED
@@ -0,0 +1,281 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List, Optional, Tuple, Union
|
2 |
+
import torch
|
3 |
+
|
4 |
+
from transformers import (
|
5 |
+
MistralModel,
|
6 |
+
MistralPreTrainedModel,
|
7 |
+
MistralForCausalLM,
|
8 |
+
MistralConfig,
|
9 |
+
)
|
10 |
+
from transformers.modeling_outputs import BaseModelOutputWithPast
|
11 |
+
from transformers.cache_utils import Cache, DynamicCache
|
12 |
+
from transformers.models.mistral.modeling_mistral import (
|
13 |
+
MistralDecoderLayer,
|
14 |
+
MistralRMSNorm,
|
15 |
+
MistralAttention,
|
16 |
+
MistralFlashAttention2,
|
17 |
+
MistralSdpaAttention,
|
18 |
+
MistralMLP,
|
19 |
+
)
|
20 |
+
from torch import nn
|
21 |
+
from transformers.utils import logging
|
22 |
+
from attn_mask_utils import (
|
23 |
+
_prepare_4d_causal_attention_mask,
|
24 |
+
_prepare_4d_causal_attention_mask_for_sdpa,
|
25 |
+
)
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
class ModifiedMistralAttention(MistralAttention):
|
31 |
+
def __init__(self, *args, **kwargs):
|
32 |
+
super().__init__(*args, **kwargs)
|
33 |
+
self.is_causal = False
|
34 |
+
|
35 |
+
|
36 |
+
class ModifiedMistralFlashAttention2(MistralFlashAttention2):
|
37 |
+
def __init__(self, *args, **kwargs):
|
38 |
+
super().__init__(*args, **kwargs)
|
39 |
+
self.is_causal = False
|
40 |
+
|
41 |
+
|
42 |
+
class ModifiedMistralSdpaAttention(MistralSdpaAttention):
|
43 |
+
def __init__(self, *args, **kwargs):
|
44 |
+
super().__init__(*args, **kwargs)
|
45 |
+
self.is_causal = False
|
46 |
+
|
47 |
+
|
48 |
+
MISTRAL_ATTENTION_CLASSES = {
|
49 |
+
"eager": ModifiedMistralAttention,
|
50 |
+
"flash_attention_2": ModifiedMistralFlashAttention2,
|
51 |
+
"sdpa": ModifiedMistralSdpaAttention,
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
class ModifiedMistralDecoderLayer(MistralDecoderLayer):
|
56 |
+
def __init__(self, config: MistralConfig, layer_idx: int):
|
57 |
+
nn.Module.__init__(self)
|
58 |
+
self.hidden_size = config.hidden_size
|
59 |
+
|
60 |
+
self.self_attn = MISTRAL_ATTENTION_CLASSES[config._attn_implementation](
|
61 |
+
config, layer_idx
|
62 |
+
)
|
63 |
+
|
64 |
+
self.mlp = MistralMLP(config)
|
65 |
+
self.input_layernorm = MistralRMSNorm(
|
66 |
+
config.hidden_size, eps=config.rms_norm_eps
|
67 |
+
)
|
68 |
+
self.post_attention_layernorm = MistralRMSNorm(
|
69 |
+
config.hidden_size, eps=config.rms_norm_eps
|
70 |
+
)
|
71 |
+
|
72 |
+
|
73 |
+
class MistralBiModel(MistralModel):
|
74 |
+
def __init__(self, config: MistralConfig):
|
75 |
+
MistralPreTrainedModel.__init__(self, config)
|
76 |
+
self.padding_idx = config.pad_token_id
|
77 |
+
self.vocab_size = config.vocab_size
|
78 |
+
|
79 |
+
self.embed_tokens = nn.Embedding(
|
80 |
+
config.vocab_size, config.hidden_size, self.padding_idx
|
81 |
+
)
|
82 |
+
self.layers = nn.ModuleList(
|
83 |
+
[
|
84 |
+
ModifiedMistralDecoderLayer(config, layer_idx)
|
85 |
+
for layer_idx in range(config.num_hidden_layers)
|
86 |
+
]
|
87 |
+
)
|
88 |
+
self._attn_implementation = config._attn_implementation
|
89 |
+
self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
90 |
+
|
91 |
+
self.gradient_checkpointing = False
|
92 |
+
# Initialize weights and apply final processing
|
93 |
+
self.post_init()
|
94 |
+
|
95 |
+
# Copied from forward() in transformers.models.mistral.modeling_mistral.MistralModel
|
96 |
+
def forward(
|
97 |
+
self,
|
98 |
+
input_ids: torch.LongTensor = None,
|
99 |
+
attention_mask: Optional[torch.Tensor] = None,
|
100 |
+
position_ids: Optional[torch.LongTensor] = None,
|
101 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
102 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
103 |
+
use_cache: Optional[bool] = None,
|
104 |
+
output_attentions: Optional[bool] = None,
|
105 |
+
output_hidden_states: Optional[bool] = None,
|
106 |
+
return_dict: Optional[bool] = None,
|
107 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
108 |
+
output_attentions = (
|
109 |
+
output_attentions
|
110 |
+
if output_attentions is not None
|
111 |
+
else self.config.output_attentions
|
112 |
+
)
|
113 |
+
output_hidden_states = (
|
114 |
+
output_hidden_states
|
115 |
+
if output_hidden_states is not None
|
116 |
+
else self.config.output_hidden_states
|
117 |
+
)
|
118 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
119 |
+
|
120 |
+
return_dict = (
|
121 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
122 |
+
)
|
123 |
+
|
124 |
+
# retrieve input_ids and inputs_embeds
|
125 |
+
if input_ids is not None and inputs_embeds is not None:
|
126 |
+
raise ValueError(
|
127 |
+
"You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time"
|
128 |
+
)
|
129 |
+
elif input_ids is not None:
|
130 |
+
batch_size, seq_length = input_ids.shape
|
131 |
+
elif inputs_embeds is not None:
|
132 |
+
batch_size, seq_length, _ = inputs_embeds.shape
|
133 |
+
else:
|
134 |
+
raise ValueError(
|
135 |
+
"You have to specify either decoder_input_ids or decoder_inputs_embeds"
|
136 |
+
)
|
137 |
+
|
138 |
+
if self.gradient_checkpointing and self.training:
|
139 |
+
if use_cache:
|
140 |
+
logger.warning_once(
|
141 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
142 |
+
)
|
143 |
+
use_cache = False
|
144 |
+
|
145 |
+
past_key_values_length = 0
|
146 |
+
|
147 |
+
if use_cache:
|
148 |
+
use_legacy_cache = not isinstance(past_key_values, Cache)
|
149 |
+
if use_legacy_cache:
|
150 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
151 |
+
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
152 |
+
|
153 |
+
if position_ids is None:
|
154 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
155 |
+
position_ids = torch.arange(
|
156 |
+
past_key_values_length,
|
157 |
+
seq_length + past_key_values_length,
|
158 |
+
dtype=torch.long,
|
159 |
+
device=device,
|
160 |
+
)
|
161 |
+
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
162 |
+
else:
|
163 |
+
position_ids = position_ids.view(-1, seq_length).long()
|
164 |
+
|
165 |
+
if inputs_embeds is None:
|
166 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
167 |
+
|
168 |
+
if (
|
169 |
+
attention_mask is not None
|
170 |
+
and self._attn_implementation == "flash_attention_2"
|
171 |
+
and use_cache
|
172 |
+
):
|
173 |
+
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
174 |
+
if is_padding_right:
|
175 |
+
raise ValueError(
|
176 |
+
"You are attempting to perform batched generation with padding_side='right'"
|
177 |
+
" this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to "
|
178 |
+
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
179 |
+
)
|
180 |
+
|
181 |
+
if self._attn_implementation == "flash_attention_2":
|
182 |
+
# 2d mask is passed through the layers
|
183 |
+
attention_mask = (
|
184 |
+
attention_mask
|
185 |
+
if (attention_mask is not None and 0 in attention_mask)
|
186 |
+
else None
|
187 |
+
)
|
188 |
+
elif self._attn_implementation == "sdpa" and not output_attentions:
|
189 |
+
# The original implementation is by-passed, see attn_mask_utils.py
|
190 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
191 |
+
attention_mask,
|
192 |
+
(batch_size, seq_length),
|
193 |
+
inputs_embeds,
|
194 |
+
past_key_values_length,
|
195 |
+
)
|
196 |
+
else:
|
197 |
+
# 4d mask is passed through the layers
|
198 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
199 |
+
attention_mask,
|
200 |
+
(batch_size, seq_length),
|
201 |
+
inputs_embeds,
|
202 |
+
past_key_values_length,
|
203 |
+
sliding_window=self.config.sliding_window,
|
204 |
+
)
|
205 |
+
|
206 |
+
hidden_states = inputs_embeds
|
207 |
+
|
208 |
+
# decoder layers
|
209 |
+
all_hidden_states = () if output_hidden_states else None
|
210 |
+
all_self_attns = () if output_attentions else None
|
211 |
+
next_decoder_cache = None
|
212 |
+
|
213 |
+
for decoder_layer in self.layers:
|
214 |
+
if output_hidden_states:
|
215 |
+
all_hidden_states += (hidden_states,)
|
216 |
+
|
217 |
+
if self.gradient_checkpointing and self.training:
|
218 |
+
layer_outputs = self._gradient_checkpointing_func(
|
219 |
+
decoder_layer.__call__,
|
220 |
+
hidden_states,
|
221 |
+
attention_mask,
|
222 |
+
position_ids,
|
223 |
+
past_key_values,
|
224 |
+
output_attentions,
|
225 |
+
use_cache,
|
226 |
+
)
|
227 |
+
else:
|
228 |
+
layer_outputs = decoder_layer(
|
229 |
+
hidden_states,
|
230 |
+
attention_mask=attention_mask,
|
231 |
+
position_ids=position_ids,
|
232 |
+
past_key_value=past_key_values,
|
233 |
+
output_attentions=output_attentions,
|
234 |
+
use_cache=use_cache,
|
235 |
+
)
|
236 |
+
|
237 |
+
hidden_states = layer_outputs[0]
|
238 |
+
|
239 |
+
if use_cache:
|
240 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
241 |
+
|
242 |
+
if output_attentions:
|
243 |
+
all_self_attns += (layer_outputs[1],)
|
244 |
+
|
245 |
+
hidden_states = self.norm(hidden_states)
|
246 |
+
|
247 |
+
# add hidden states from the last decoder layer
|
248 |
+
if output_hidden_states:
|
249 |
+
all_hidden_states += (hidden_states,)
|
250 |
+
|
251 |
+
next_cache = None
|
252 |
+
if use_cache:
|
253 |
+
next_cache = (
|
254 |
+
next_decoder_cache.to_legacy_cache()
|
255 |
+
if use_legacy_cache
|
256 |
+
else next_decoder_cache
|
257 |
+
)
|
258 |
+
|
259 |
+
if not return_dict:
|
260 |
+
return tuple(
|
261 |
+
v
|
262 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
263 |
+
if v is not None
|
264 |
+
)
|
265 |
+
return BaseModelOutputWithPast(
|
266 |
+
last_hidden_state=hidden_states,
|
267 |
+
past_key_values=next_cache,
|
268 |
+
hidden_states=all_hidden_states,
|
269 |
+
attentions=all_self_attns,
|
270 |
+
)
|
271 |
+
|
272 |
+
|
273 |
+
class MistralBiForMNTP(MistralForCausalLM):
|
274 |
+
def __init__(self, config):
|
275 |
+
MistralPreTrainedModel.__init__(self, config)
|
276 |
+
self.model = MistralBiModel(config)
|
277 |
+
self.vocab_size = config.vocab_size
|
278 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
279 |
+
|
280 |
+
# Initialize weights and apply final processing
|
281 |
+
self.post_init()
|
classifier.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from bidirectional_mistral import MistralBiModel
|
2 |
+
from transformers import MistralPreTrainedModel
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from typing import Optional, List
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
8 |
+
from transformers.modeling_outputs import SequenceClassifierOutputWithPast
|
9 |
+
|
10 |
+
|
11 |
+
class MistralForSequenceClassification(MistralPreTrainedModel):
|
12 |
+
def __init__(self, config):
|
13 |
+
super().__init__(config)
|
14 |
+
self.num_labels = config.num_labels
|
15 |
+
self.model = MistralBiModel(config)
|
16 |
+
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
|
17 |
+
|
18 |
+
# Initialize weights and apply final processing
|
19 |
+
self.post_init()
|
20 |
+
|
21 |
+
def forward(
|
22 |
+
self,
|
23 |
+
input_ids: torch.LongTensor = None,
|
24 |
+
attention_mask: Optional[torch.Tensor] = None,
|
25 |
+
position_ids: Optional[torch.LongTensor] = None,
|
26 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
27 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
28 |
+
labels: Optional[torch.LongTensor] = None,
|
29 |
+
use_cache: Optional[bool] = None,
|
30 |
+
output_attentions: Optional[bool] = None,
|
31 |
+
output_hidden_states: Optional[bool] = None,
|
32 |
+
return_dict: Optional[bool] = None,
|
33 |
+
):
|
34 |
+
r"""
|
35 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
36 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
37 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
38 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
39 |
+
"""
|
40 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
41 |
+
|
42 |
+
transformer_outputs = self.model(
|
43 |
+
input_ids,
|
44 |
+
attention_mask=attention_mask,
|
45 |
+
position_ids=position_ids,
|
46 |
+
past_key_values=past_key_values,
|
47 |
+
inputs_embeds=inputs_embeds,
|
48 |
+
use_cache=use_cache,
|
49 |
+
output_attentions=output_attentions,
|
50 |
+
output_hidden_states=output_hidden_states,
|
51 |
+
return_dict=return_dict,
|
52 |
+
)
|
53 |
+
pooled_output = transformer_outputs[0][:, 0]
|
54 |
+
logits = self.score(pooled_output)
|
55 |
+
|
56 |
+
loss = None
|
57 |
+
if labels is not None:
|
58 |
+
if self.config.problem_type is None:
|
59 |
+
if self.num_labels == 1:
|
60 |
+
self.config.problem_type = "regression"
|
61 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
62 |
+
self.config.problem_type = "single_label_classification"
|
63 |
+
else:
|
64 |
+
self.config.problem_type = "multi_label_classification"
|
65 |
+
|
66 |
+
if self.config.problem_type == "regression":
|
67 |
+
loss_fct = MSELoss()
|
68 |
+
if self.num_labels == 1:
|
69 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
70 |
+
else:
|
71 |
+
loss = loss_fct(logits, labels)
|
72 |
+
elif self.config.problem_type == "single_label_classification":
|
73 |
+
loss_fct = CrossEntropyLoss()
|
74 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
75 |
+
elif self.config.problem_type == "multi_label_classification":
|
76 |
+
loss_fct = BCEWithLogitsLoss()
|
77 |
+
loss = loss_fct(logits, labels)
|
78 |
+
if not return_dict:
|
79 |
+
output = (logits,) + transformer_outputs[2:]
|
80 |
+
return ((loss,) + output) if loss is not None else output
|
81 |
+
|
82 |
+
return SequenceClassifierOutputWithPast(
|
83 |
+
loss=loss,
|
84 |
+
logits=logits,
|
85 |
+
past_key_values=transformer_outputs.past_key_values,
|
86 |
+
hidden_states=transformer_outputs.hidden_states,
|
87 |
+
attentions=transformer_outputs.attentions,
|
88 |
+
)
|