malteos
commited on
Commit
•
18ee1d3
1
Parent(s):
6276f3f
init
Browse files- README.md +44 -0
- config.json +24 -0
- pytorch_model.bin +3 -0
- special_tokens_map.json +1 -0
- tokenizer_config.json +1 -0
- trainer_state.json +0 -0
- vocab.txt +0 -0
README.md
CHANGED
@@ -1,3 +1,47 @@
|
|
1 |
---
|
2 |
license: mit
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: mit
|
3 |
+
tags:
|
4 |
+
- feature-extraction
|
5 |
+
language: en
|
6 |
---
|
7 |
+
|
8 |
+
# PubMedNCL
|
9 |
+
|
10 |
+
A pretrained language model for document representations of biomedical papers.
|
11 |
+
PubMedNCL is based on [PubMedBERT](https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext), which is a BERT model pretrained on abstracts and full-texts from PubMedCentral, and fine-tuned via citation neighborhood contrastive learning, as introduced by [SciNCL](https://huggingface.co/malteos/scincl).
|
12 |
+
|
13 |
+
## How to use the pretrained model
|
14 |
+
|
15 |
+
|
16 |
+
```python
|
17 |
+
from transformers import AutoTokenizer, AutoModel
|
18 |
+
|
19 |
+
# load model and tokenizer
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained('malteos/PubMedNCL')
|
21 |
+
model = AutoModel.from_pretrained('malteos/PubMedNCL')
|
22 |
+
|
23 |
+
papers = [{'title': 'BERT', 'abstract': 'We introduce a new language representation model called BERT'},
|
24 |
+
{'title': 'Attention is all you need', 'abstract': ' The dominant sequence transduction models are based on complex recurrent or convolutional neural networks'}]
|
25 |
+
|
26 |
+
# concatenate title and abstract with [SEP] token
|
27 |
+
title_abs = [d['title'] + tokenizer.sep_token + (d.get('abstract') or '') for d in papers]
|
28 |
+
|
29 |
+
# preprocess the input
|
30 |
+
inputs = tokenizer(title_abs, padding=True, truncation=True, return_tensors="pt", max_length=512)
|
31 |
+
|
32 |
+
# inference
|
33 |
+
result = model(**inputs)
|
34 |
+
|
35 |
+
# take the first token ([CLS] token) in the batch as the embedding
|
36 |
+
embeddings = result.last_hidden_state[:, 0, :]
|
37 |
+
```
|
38 |
+
|
39 |
+
## Citation
|
40 |
+
|
41 |
+
- [Neighborhood Contrastive Learning for Scientific Document Representations with Citation Embeddings (EMNLP 2022 paper)](https://arxiv.org/abs/2202.06671).
|
42 |
+
- [Domain-Specific Language Model Pretraining for Biomedical Natural Language Processing](https://arxiv.org/abs/2007.15779).
|
43 |
+
|
44 |
+
## License
|
45 |
+
|
46 |
+
MIT
|
47 |
+
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "data/s2orc_with_specter_without_scidocs/specter/corpus_seed_0/seed_0_ep5knn20-25_en3random_without_knn_hn2knn3998-4000/model_BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"gradient_checkpointing": false,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-12,
|
14 |
+
"max_position_embeddings": 512,
|
15 |
+
"model_type": "bert",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 0,
|
19 |
+
"position_embedding_type": "absolute",
|
20 |
+
"transformers_version": "4.5.1",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ee39908b91b5dbf93aa8859ca9e140f7b087f3c09ae05250b45628301dec191b
|
3 |
+
size 438012727
|
special_tokens_map.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
|
tokenizer_config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "special_tokens_map_file": null, "name_or_path": "data/s2orc_with_specter_without_scidocs/specter/corpus_seed_0/seed_0_ep5knn20-25_en3random_without_knn_hn2knn3998-4000/model_BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext", "do_basic_tokenize": true, "never_split": null}
|
trainer_state.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|