Upload with usual hyperparameter
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -21.23 +/- 12.76
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd195cfcbfcb4253d3bf7973f97c2adce07bb5c7324197d90f86ece9d7251df3
|
3 |
+
size 108036
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fec941fa670>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fec941fb240>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 10000,
|
23 |
+
"_total_timesteps": 10000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1686725397853084400,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3NhbG1hbXVuL21pbmljb25kYTMvZW52cy9oZi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvc2FsbWFtdW4vbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASoGoPnEgFz668tI+SoGoPnEgFz668tI+SoGoPnEgFz668tI+SoGoPnEgFz668tI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArd1aPzEqwD//MAC/c7DWvsfU0T+m7/I+A0ZJvqzRuT82ONw+6lmaP8AhEz/pmsc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABKgag+cSAXPrry0j4M4cE9/avWPBg4iDxKgag+cSAXPrry0j4M4cE9/avWPBg4iDxKgag+cSAXPrry0j4M4cE9/avWPBg4iDxKgag+cSAXPrry0j4M4cE9/avWPBg4iDyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.3291114 0.14758469 0.4120081 ]\n [0.3291114 0.14758469 0.4120081 ]\n [0.3291114 0.14758469 0.4120081 ]\n [0.3291114 0.14758469 0.4120081 ]]",
|
38 |
+
"desired_goal": "[[ 0.854945 1.5012876 -0.5007476 ]\n [-0.41931495 1.639306 0.47448462]\n [-0.19655614 1.4517112 0.43011636]\n [ 1.205869 0.57473373 0.09746344]]",
|
39 |
+
"observation": "[[0.3291114 0.14758469 0.4120081 0.09466752 0.02620506 0.01662831]\n [0.3291114 0.14758469 0.4120081 0.09466752 0.02620506 0.01662831]\n [0.3291114 0.14758469 0.4120081 0.09466752 0.02620506 0.01662831]\n [0.3291114 0.14758469 0.4120081 0.09466752 0.02620506 0.01662831]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAugjLvYEwQL2MpDs+4r+4vHbf1b2ZwIE+RduJvacqD77jBIA9QV7APRGU7r3PYYY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[-0.09913774 -0.04692126 0.18324488]\n [-0.02255243 -0.10443012 0.25342253]\n [-0.06731275 -0.13981114 0.06250932]\n [ 0.09392978 -0.11649335 0.26246497]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbmx2pPoGIcCUhpRSlIwBbJRLMowBdJRHQDJ4T+NtIkJ1fZQoaAZoCWgPQwgP0egOYo8kwJSGlFKUaBVLMmgWR0AyWkSmIj4YdX2UKGgGaAloD0MIEYqtoGkxMsCUhpRSlGgVSzJoFkdAMjdWU8mrsHV9lChoBmgJaA9DCDSg3oyajxzAlIaUUpRoFUsyaBZHQDIS9i+cpb51fZQoaAZoCWgPQwiAf0qVKOsbwJSGlFKUaBVLMmgWR0AzFjx0+1SgdX2UKGgGaAloD0MIev60UZ3+KMCUhpRSlGgVSzJoFkdAMvgte2NNrXV9lChoBmgJaA9DCEhRZ+4haSjAlIaUUpRoFUsyaBZHQDLVSFXaJyh1fZQoaAZoCWgPQwjLu+oB87AdwJSGlFKUaBVLMmgWR0AysM9KVY6odX2UKGgGaAloD0MIKCzxgLKZMcCUhpRSlGgVSzJoFkdAM7DPjXFtK3V9lChoBmgJaA9DCIZzDTM0TjLAlIaUUpRoFUsyaBZHQDOS75Ec81Z1fZQoaAZoCWgPQwik374OnPcwwJSGlFKUaBVLMmgWR0AzcBxgiNbUdX2UKGgGaAloD0MIigW+oltvGsCUhpRSlGgVSzJoFkdAM0vPTodMkHV9lChoBmgJaA9DCD3WjAxy1yTAlIaUUpRoFUsyaBZHQDRP1nM+u/11fZQoaAZoCWgPQwgtJ6H0hfgqwJSGlFKUaBVLMmgWR0A0Mff4yoGZdX2UKGgGaAloD0MIMZkqGJXIM8CUhpRSlGgVSzJoFkdANA8QEpy6tnV9lChoBmgJaA9DCGMOgo5W5SXAlIaUUpRoFUsyaBZHQDPqfOD8Lrp1fZQoaAZoCWgPQwh6NUBpqBkmwJSGlFKUaBVLMmgWR0A07QgLZzxPdX2UKGgGaAloD0MII93PKci/KMCUhpRSlGgVSzJoFkdANM8VUMoc73V9lChoBmgJaA9DCFtc4zPZDxfAlIaUUpRoFUsyaBZHQDSsLkS26TZ1fZQoaAZoCWgPQwgiGXJsPSMhwJSGlFKUaBVLMmgWR0A0h69TP0I1dX2UKGgGaAloD0MINSVZh6O3NMCUhpRSlGgVSzJoFkdANYD238XN1XV9lChoBmgJaA9DCG5t4XmpCCzAlIaUUpRoFUsyaBZHQDVjD0lJHy51fZQoaAZoCWgPQwjwTGiSWKomwJSGlFKUaBVLMmgWR0A1QB/I8yN5dX2UKGgGaAloD0MIH/MBgc54MsCUhpRSlGgVSzJoFkdANRunZTQ3P3V9lChoBmgJaA9DCEX2QZYFwx/AlIaUUpRoFUsyaBZHQDYe0pmVZ9x1fZQoaAZoCWgPQwiCrRIsDg82wJSGlFKUaBVLMmgWR0A2ANeMQ2/BdX2UKGgGaAloD0MIpRMJppr9McCUhpRSlGgVSzJoFkdANd4Rh+fAbnV9lChoBmgJaA9DCKZCPBIv7y/AlIaUUpRoFUsyaBZHQDW5mapgkTp1fZQoaAZoCWgPQwgMPzifOkYxwJSGlFKUaBVLMmgWR0A2vfsNUfgadX2UKGgGaAloD0MIaAdcV8xYHcCUhpRSlGgVSzJoFkdANp/5P/JeV3V9lChoBmgJaA9DCOj0vBsLAiPAlIaUUpRoFUsyaBZHQDZ9XA/LTx51fZQoaAZoCWgPQwiMLm8O19okwJSGlFKUaBVLMmgWR0A2WQTEit7sdX2UKGgGaAloD0MI1/uNdtxoJcCUhpRSlGgVSzJoFkdAN2VRLsa86HV9lChoBmgJaA9DCAe139qJchnAlIaUUpRoFUsyaBZHQDdHpY9xIat1fZQoaAZoCWgPQwjYfcfw2I8awJSGlFKUaBVLMmgWR0A3JLXtjTa1dX2UKGgGaAloD0MIqrhxi/npI8CUhpRSlGgVSzJoFkdANwCcLBsQ/XV9lChoBmgJaA9DCK66DtWUFB/AlIaUUpRoFUsyaBZHQDgCe/Yao/B1fZQoaAZoCWgPQwilLhnHSF4twJSGlFKUaBVLMmgWR0A35Hv+fh/BdX2UKGgGaAloD0MIrYTukjjrKsCUhpRSlGgVSzJoFkdAN8GAf+0gKXV9lChoBmgJaA9DCOPD7GXbKTfAlIaUUpRoFUsyaBZHQDec+LWI42l1fZQoaAZoCWgPQwh4gCctXJYlwJSGlFKUaBVLMmgWR0A4vixFAmiQdX2UKGgGaAloD0MIYadYNQhHMcCUhpRSlGgVSzJoFkdAOKBKL876pHV9lChoBmgJaA9DCL4z2qokOiHAlIaUUpRoFUsyaBZHQDh9V+7UXpJ1fZQoaAZoCWgPQwgH8BZIUDwrwJSGlFKUaBVLMmgWR0A4WMyad+XrdX2UKGgGaAloD0MIfGDHf4FwIMCUhpRSlGgVSzJoFkdAOWJxFRYRunV9lChoBmgJaA9DCKzlzkwwnCvAlIaUUpRoFUsyaBZHQDlElnh86WB1fZQoaAZoCWgPQwgtPgXAeEI1wJSGlFKUaBVLMmgWR0A5IfTCtRvWdX2UKGgGaAloD0MI10tTBDjNI8CUhpRSlGgVSzJoFkdAOP1/H5rP+nV9lChoBmgJaA9DCCDVsN8TayfAlIaUUpRoFUsyaBZHQDodZ/0/W2B1fZQoaAZoCWgPQwjsvmN47LcwwJSGlFKUaBVLMmgWR0A5/4DcM3IddX2UKGgGaAloD0MIsylXeJeTLMCUhpRSlGgVSzJoFkdAOdy3CsOoYXV9lChoBmgJaA9DCAWJ7e4ByibAlIaUUpRoFUsyaBZHQDm4oCuEEkl1fZQoaAZoCWgPQwgFptO6DZ4ywJSGlFKUaBVLMmgWR0A6zXV9Wp6ydX2UKGgGaAloD0MIUfpCyHmXOcCUhpRSlGgVSzJoFkdAOq+RkmQbM3V9lChoBmgJaA9DCOkmMQishC7AlIaUUpRoFUsyaBZHQDqMrupjtol1fZQoaAZoCWgPQwjwayQJwoUewJSGlFKUaBVLMmgWR0A6aDqnm7rcdX2UKGgGaAloD0MI10//WfOjLMCUhpRSlGgVSzJoFkdAO2U0Jng5znV9lChoBmgJaA9DCAkaM4l6mTfAlIaUUpRoFUsyaBZHQDtHM0P6KtR1fZQoaAZoCWgPQwiM3NPVHZsgwJSGlFKUaBVLMmgWR0A7JEhaC+URdX2UKGgGaAloD0MIDjLJyFkgJcCUhpRSlGgVSzJoFkdAOv/Uz9CNTHV9lChoBmgJaA9DCMIzoUliWSPAlIaUUpRoFUsyaBZHQDwXdFfAsTZ1fZQoaAZoCWgPQwixMEROX68awJSGlFKUaBVLMmgWR0A7+ZUkv9LpdX2UKGgGaAloD0MIAFgdOdLJM8CUhpRSlGgVSzJoFkdAO9ahpQDV6XV9lChoBmgJaA9DCPVk/tE3ASPAlIaUUpRoFUsyaBZHQDuyOdXko4N1fZQoaAZoCWgPQwhag/dVucAfwJSGlFKUaBVLMmgWR0A8zdi2DxsmdX2UKGgGaAloD0MIN+DzwwiRKMCUhpRSlGgVSzJoFkdAPK//7zkIX3V9lChoBmgJaA9DCD1fs1w2EiHAlIaUUpRoFUsyaBZHQDyNuAI6bON1fZQoaAZoCWgPQwjDKAge3z4awJSGlFKUaBVLMmgWR0A8aWrfcer/dX2UKGgGaAloD0MICMiXUMEpI8CUhpRSlGgVSzJoFkdAPYDZL7Gec3V9lChoBmgJaA9DCJpgONcwgynAlIaUUpRoFUsyaBZHQD1jC+De0ol1fZQoaAZoCWgPQwhkeOxnsSgywJSGlFKUaBVLMmgWR0A9QEGJN0vHdX2UKGgGaAloD0MIMNXMWgoIJcCUhpRSlGgVSzJoFkdAPRv7WNFSbnV9lChoBmgJaA9DCFRx4xbzkxjAlIaUUpRoFUsyaBZHQD4l6Rhc7hh1fZQoaAZoCWgPQwhHBOPg0mU9wJSGlFKUaBVLMmgWR0A+B+hGpda/dX2UKGgGaAloD0MIKH6MuWuxL8CUhpRSlGgVSzJoFkdAPeT9sJpnH3V9lChoBmgJaA9DCGcsms5Olh/AlIaUUpRoFUsyaBZHQD3BCIDYAbR1fZQoaAZoCWgPQwhIb7iP3KIiwJSGlFKUaBVLMmgWR0A+3Majvd/KdX2UKGgGaAloD0MI3uNME7ZXJMCUhpRSlGgVSzJoFkdAPr7LIPsiS3V9lChoBmgJaA9DCF7b2y3JsRzAlIaUUpRoFUsyaBZHQD6cMVk+X7d1fZQoaAZoCWgPQwip9ul4zHAnwJSGlFKUaBVLMmgWR0A+d+o99tuUdX2UKGgGaAloD0MIQu23dqJAOcCUhpRSlGgVSzJoFkdAP5dFjNIK+nV9lChoBmgJaA9DCAD+KVWiHB/AlIaUUpRoFUsyaBZHQD95cjZ+QU51fZQoaAZoCWgPQwiYE7TJ4fMvwJSGlFKUaBVLMmgWR0A/VtsvZh8ZdX2UKGgGaAloD0MIo5Ol1vsdIsCUhpRSlGgVSzJoFkdAPzJbpu/DcnV9lChoBmgJaA9DCHTOT3Ec+CjAlIaUUpRoFUsyaBZHQEAfSa3I+4d1fZQoaAZoCWgPQwgH6/8c5nsVwJSGlFKUaBVLMmgWR0BAEGPHT7VKdX2UKGgGaAloD0MIblLRWPsvPMCUhpRSlGgVSzJoFkdAP/3OryUcGXV9lChoBmgJaA9DCDY//tKiFi7AlIaUUpRoFUsyaBZHQD/ZRAKOT7l1fZQoaAZoCWgPQwjnyMovg2kkwJSGlFKUaBVLMmgWR0BAeivovBacdX2UKGgGaAloD0MI/u2yX3dKKcCUhpRSlGgVSzJoFkdAQGtY0VJti3V9lChoBmgJaA9DCExTBDi94zXAlIaUUpRoFUsyaBZHQEBZ7w8W9Dh1fZQoaAZoCWgPQwhWuOUjKbkkwJSGlFKUaBVLMmgWR0BAR7zK9wm3dX2UKGgGaAloD0MIHZQw0/aPJMCUhpRSlGgVSzJoFkdAQNCH6/IsAnV9lChoBmgJaA9DCHVZTGw+zhjAlIaUUpRoFUsyaBZHQEDBqcEvCdl1fZQoaAZoCWgPQwhG7BNAMZYxwJSGlFKUaBVLMmgWR0BAsDPfKp1idX2UKGgGaAloD0MIxAWgUbr8JMCUhpRSlGgVSzJoFkdAQJ3zreIl+nV9lChoBmgJaA9DCMjNcAM+nyzAlIaUUpRoFUsyaBZHQEEuRlpXZGt1fZQoaAZoCWgPQwgraFpiZfwjwJSGlFKUaBVLMmgWR0BBH0RODaoNdX2UKGgGaAloD0MIUYaqmEpvKMCUhpRSlGgVSzJoFkdAQQ3LFGXoknV9lChoBmgJaA9DCN8bQwBwsDXAlIaUUpRoFUsyaBZHQED7j4pMHr11ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 500,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e509e768d43709870d7e506d58e20b9ff841107e1946f1bf8f1f1fc431108ac8
|
3 |
+
size 44670
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1595d74c1a00f1976b038b0dc6783a07481a9352b68f86b762d42f6ed6935e89
|
3 |
+
size 46014
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 1.11.0+cu102
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.2
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fec941fa670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fec941fb240>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686725397853084400, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3NhbG1hbXVuL21pbmljb25kYTMvZW52cy9oZi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvc2FsbWFtdW4vbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAASoGoPnEgFz668tI+SoGoPnEgFz668tI+SoGoPnEgFz668tI+SoGoPnEgFz668tI+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAArd1aPzEqwD//MAC/c7DWvsfU0T+m7/I+A0ZJvqzRuT82ONw+6lmaP8AhEz/pmsc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABKgag+cSAXPrry0j4M4cE9/avWPBg4iDxKgag+cSAXPrry0j4M4cE9/avWPBg4iDxKgag+cSAXPrry0j4M4cE9/avWPBg4iDxKgag+cSAXPrry0j4M4cE9/avWPBg4iDyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.3291114 0.14758469 0.4120081 ]\n [0.3291114 0.14758469 0.4120081 ]\n [0.3291114 0.14758469 0.4120081 ]\n [0.3291114 0.14758469 0.4120081 ]]", "desired_goal": "[[ 0.854945 1.5012876 -0.5007476 ]\n [-0.41931495 1.639306 0.47448462]\n [-0.19655614 1.4517112 0.43011636]\n [ 1.205869 0.57473373 0.09746344]]", "observation": "[[0.3291114 0.14758469 0.4120081 0.09466752 0.02620506 0.01662831]\n [0.3291114 0.14758469 0.4120081 0.09466752 0.02620506 0.01662831]\n [0.3291114 0.14758469 0.4120081 0.09466752 0.02620506 0.01662831]\n [0.3291114 0.14758469 0.4120081 0.09466752 0.02620506 0.01662831]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAugjLvYEwQL2MpDs+4r+4vHbf1b2ZwIE+RduJvacqD77jBIA9QV7APRGU7r3PYYY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.09913774 -0.04692126 0.18324488]\n [-0.02255243 -0.10443012 0.25342253]\n [-0.06731275 -0.13981114 0.06250932]\n [ 0.09392978 -0.11649335 0.26246497]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbmx2pPoGIcCUhpRSlIwBbJRLMowBdJRHQDJ4T+NtIkJ1fZQoaAZoCWgPQwgP0egOYo8kwJSGlFKUaBVLMmgWR0AyWkSmIj4YdX2UKGgGaAloD0MIEYqtoGkxMsCUhpRSlGgVSzJoFkdAMjdWU8mrsHV9lChoBmgJaA9DCDSg3oyajxzAlIaUUpRoFUsyaBZHQDIS9i+cpb51fZQoaAZoCWgPQwiAf0qVKOsbwJSGlFKUaBVLMmgWR0AzFjx0+1SgdX2UKGgGaAloD0MIev60UZ3+KMCUhpRSlGgVSzJoFkdAMvgte2NNrXV9lChoBmgJaA9DCEhRZ+4haSjAlIaUUpRoFUsyaBZHQDLVSFXaJyh1fZQoaAZoCWgPQwjLu+oB87AdwJSGlFKUaBVLMmgWR0AysM9KVY6odX2UKGgGaAloD0MIKCzxgLKZMcCUhpRSlGgVSzJoFkdAM7DPjXFtK3V9lChoBmgJaA9DCIZzDTM0TjLAlIaUUpRoFUsyaBZHQDOS75Ec81Z1fZQoaAZoCWgPQwik374OnPcwwJSGlFKUaBVLMmgWR0AzcBxgiNbUdX2UKGgGaAloD0MIigW+oltvGsCUhpRSlGgVSzJoFkdAM0vPTodMkHV9lChoBmgJaA9DCD3WjAxy1yTAlIaUUpRoFUsyaBZHQDRP1nM+u/11fZQoaAZoCWgPQwgtJ6H0hfgqwJSGlFKUaBVLMmgWR0A0Mff4yoGZdX2UKGgGaAloD0MIMZkqGJXIM8CUhpRSlGgVSzJoFkdANA8QEpy6tnV9lChoBmgJaA9DCGMOgo5W5SXAlIaUUpRoFUsyaBZHQDPqfOD8Lrp1fZQoaAZoCWgPQwh6NUBpqBkmwJSGlFKUaBVLMmgWR0A07QgLZzxPdX2UKGgGaAloD0MII93PKci/KMCUhpRSlGgVSzJoFkdANM8VUMoc73V9lChoBmgJaA9DCFtc4zPZDxfAlIaUUpRoFUsyaBZHQDSsLkS26TZ1fZQoaAZoCWgPQwgiGXJsPSMhwJSGlFKUaBVLMmgWR0A0h69TP0I1dX2UKGgGaAloD0MINSVZh6O3NMCUhpRSlGgVSzJoFkdANYD238XN1XV9lChoBmgJaA9DCG5t4XmpCCzAlIaUUpRoFUsyaBZHQDVjD0lJHy51fZQoaAZoCWgPQwjwTGiSWKomwJSGlFKUaBVLMmgWR0A1QB/I8yN5dX2UKGgGaAloD0MIH/MBgc54MsCUhpRSlGgVSzJoFkdANRunZTQ3P3V9lChoBmgJaA9DCEX2QZYFwx/AlIaUUpRoFUsyaBZHQDYe0pmVZ9x1fZQoaAZoCWgPQwiCrRIsDg82wJSGlFKUaBVLMmgWR0A2ANeMQ2/BdX2UKGgGaAloD0MIpRMJppr9McCUhpRSlGgVSzJoFkdANd4Rh+fAbnV9lChoBmgJaA9DCKZCPBIv7y/AlIaUUpRoFUsyaBZHQDW5mapgkTp1fZQoaAZoCWgPQwgMPzifOkYxwJSGlFKUaBVLMmgWR0A2vfsNUfgadX2UKGgGaAloD0MIaAdcV8xYHcCUhpRSlGgVSzJoFkdANp/5P/JeV3V9lChoBmgJaA9DCOj0vBsLAiPAlIaUUpRoFUsyaBZHQDZ9XA/LTx51fZQoaAZoCWgPQwiMLm8O19okwJSGlFKUaBVLMmgWR0A2WQTEit7sdX2UKGgGaAloD0MI1/uNdtxoJcCUhpRSlGgVSzJoFkdAN2VRLsa86HV9lChoBmgJaA9DCAe139qJchnAlIaUUpRoFUsyaBZHQDdHpY9xIat1fZQoaAZoCWgPQwjYfcfw2I8awJSGlFKUaBVLMmgWR0A3JLXtjTa1dX2UKGgGaAloD0MIqrhxi/npI8CUhpRSlGgVSzJoFkdANwCcLBsQ/XV9lChoBmgJaA9DCK66DtWUFB/AlIaUUpRoFUsyaBZHQDgCe/Yao/B1fZQoaAZoCWgPQwilLhnHSF4twJSGlFKUaBVLMmgWR0A35Hv+fh/BdX2UKGgGaAloD0MIrYTukjjrKsCUhpRSlGgVSzJoFkdAN8GAf+0gKXV9lChoBmgJaA9DCOPD7GXbKTfAlIaUUpRoFUsyaBZHQDec+LWI42l1fZQoaAZoCWgPQwh4gCctXJYlwJSGlFKUaBVLMmgWR0A4vixFAmiQdX2UKGgGaAloD0MIYadYNQhHMcCUhpRSlGgVSzJoFkdAOKBKL876pHV9lChoBmgJaA9DCL4z2qokOiHAlIaUUpRoFUsyaBZHQDh9V+7UXpJ1fZQoaAZoCWgPQwgH8BZIUDwrwJSGlFKUaBVLMmgWR0A4WMyad+XrdX2UKGgGaAloD0MIfGDHf4FwIMCUhpRSlGgVSzJoFkdAOWJxFRYRunV9lChoBmgJaA9DCKzlzkwwnCvAlIaUUpRoFUsyaBZHQDlElnh86WB1fZQoaAZoCWgPQwgtPgXAeEI1wJSGlFKUaBVLMmgWR0A5IfTCtRvWdX2UKGgGaAloD0MI10tTBDjNI8CUhpRSlGgVSzJoFkdAOP1/H5rP+nV9lChoBmgJaA9DCCDVsN8TayfAlIaUUpRoFUsyaBZHQDodZ/0/W2B1fZQoaAZoCWgPQwjsvmN47LcwwJSGlFKUaBVLMmgWR0A5/4DcM3IddX2UKGgGaAloD0MIsylXeJeTLMCUhpRSlGgVSzJoFkdAOdy3CsOoYXV9lChoBmgJaA9DCAWJ7e4ByibAlIaUUpRoFUsyaBZHQDm4oCuEEkl1fZQoaAZoCWgPQwgFptO6DZ4ywJSGlFKUaBVLMmgWR0A6zXV9Wp6ydX2UKGgGaAloD0MIUfpCyHmXOcCUhpRSlGgVSzJoFkdAOq+RkmQbM3V9lChoBmgJaA9DCOkmMQishC7AlIaUUpRoFUsyaBZHQDqMrupjtol1fZQoaAZoCWgPQwjwayQJwoUewJSGlFKUaBVLMmgWR0A6aDqnm7rcdX2UKGgGaAloD0MI10//WfOjLMCUhpRSlGgVSzJoFkdAO2U0Jng5znV9lChoBmgJaA9DCAkaM4l6mTfAlIaUUpRoFUsyaBZHQDtHM0P6KtR1fZQoaAZoCWgPQwiM3NPVHZsgwJSGlFKUaBVLMmgWR0A7JEhaC+URdX2UKGgGaAloD0MIDjLJyFkgJcCUhpRSlGgVSzJoFkdAOv/Uz9CNTHV9lChoBmgJaA9DCMIzoUliWSPAlIaUUpRoFUsyaBZHQDwXdFfAsTZ1fZQoaAZoCWgPQwixMEROX68awJSGlFKUaBVLMmgWR0A7+ZUkv9LpdX2UKGgGaAloD0MIAFgdOdLJM8CUhpRSlGgVSzJoFkdAO9ahpQDV6XV9lChoBmgJaA9DCPVk/tE3ASPAlIaUUpRoFUsyaBZHQDuyOdXko4N1fZQoaAZoCWgPQwhag/dVucAfwJSGlFKUaBVLMmgWR0A8zdi2DxsmdX2UKGgGaAloD0MIN+DzwwiRKMCUhpRSlGgVSzJoFkdAPK//7zkIX3V9lChoBmgJaA9DCD1fs1w2EiHAlIaUUpRoFUsyaBZHQDyNuAI6bON1fZQoaAZoCWgPQwjDKAge3z4awJSGlFKUaBVLMmgWR0A8aWrfcer/dX2UKGgGaAloD0MICMiXUMEpI8CUhpRSlGgVSzJoFkdAPYDZL7Gec3V9lChoBmgJaA9DCJpgONcwgynAlIaUUpRoFUsyaBZHQD1jC+De0ol1fZQoaAZoCWgPQwhkeOxnsSgywJSGlFKUaBVLMmgWR0A9QEGJN0vHdX2UKGgGaAloD0MIMNXMWgoIJcCUhpRSlGgVSzJoFkdAPRv7WNFSbnV9lChoBmgJaA9DCFRx4xbzkxjAlIaUUpRoFUsyaBZHQD4l6Rhc7hh1fZQoaAZoCWgPQwhHBOPg0mU9wJSGlFKUaBVLMmgWR0A+B+hGpda/dX2UKGgGaAloD0MIKH6MuWuxL8CUhpRSlGgVSzJoFkdAPeT9sJpnH3V9lChoBmgJaA9DCGcsms5Olh/AlIaUUpRoFUsyaBZHQD3BCIDYAbR1fZQoaAZoCWgPQwhIb7iP3KIiwJSGlFKUaBVLMmgWR0A+3Majvd/KdX2UKGgGaAloD0MI3uNME7ZXJMCUhpRSlGgVSzJoFkdAPr7LIPsiS3V9lChoBmgJaA9DCF7b2y3JsRzAlIaUUpRoFUsyaBZHQD6cMVk+X7d1fZQoaAZoCWgPQwip9ul4zHAnwJSGlFKUaBVLMmgWR0A+d+o99tuUdX2UKGgGaAloD0MIQu23dqJAOcCUhpRSlGgVSzJoFkdAP5dFjNIK+nV9lChoBmgJaA9DCAD+KVWiHB/AlIaUUpRoFUsyaBZHQD95cjZ+QU51fZQoaAZoCWgPQwiYE7TJ4fMvwJSGlFKUaBVLMmgWR0A/VtsvZh8ZdX2UKGgGaAloD0MIo5Ol1vsdIsCUhpRSlGgVSzJoFkdAPzJbpu/DcnV9lChoBmgJaA9DCHTOT3Ec+CjAlIaUUpRoFUsyaBZHQEAfSa3I+4d1fZQoaAZoCWgPQwgH6/8c5nsVwJSGlFKUaBVLMmgWR0BAEGPHT7VKdX2UKGgGaAloD0MIblLRWPsvPMCUhpRSlGgVSzJoFkdAP/3OryUcGXV9lChoBmgJaA9DCDY//tKiFi7AlIaUUpRoFUsyaBZHQD/ZRAKOT7l1fZQoaAZoCWgPQwjnyMovg2kkwJSGlFKUaBVLMmgWR0BAeivovBacdX2UKGgGaAloD0MI/u2yX3dKKcCUhpRSlGgVSzJoFkdAQGtY0VJti3V9lChoBmgJaA9DCExTBDi94zXAlIaUUpRoFUsyaBZHQEBZ7w8W9Dh1fZQoaAZoCWgPQwhWuOUjKbkkwJSGlFKUaBVLMmgWR0BAR7zK9wm3dX2UKGgGaAloD0MIHZQw0/aPJMCUhpRSlGgVSzJoFkdAQNCH6/IsAnV9lChoBmgJaA9DCHVZTGw+zhjAlIaUUpRoFUsyaBZHQEDBqcEvCdl1fZQoaAZoCWgPQwhG7BNAMZYxwJSGlFKUaBVLMmgWR0BAsDPfKp1idX2UKGgGaAloD0MIxAWgUbr8JMCUhpRSlGgVSzJoFkdAQJ3zreIl+nV9lChoBmgJaA9DCMjNcAM+nyzAlIaUUpRoFUsyaBZHQEEuRlpXZGt1fZQoaAZoCWgPQwgraFpiZfwjwJSGlFKUaBVLMmgWR0BBH0RODaoNdX2UKGgGaAloD0MIUYaqmEpvKMCUhpRSlGgVSzJoFkdAQQ3LFGXoknV9lChoBmgJaA9DCN8bQwBwsDXAlIaUUpRoFUsyaBZHQED7j4pMHr11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -21.23415861353278, "std_reward": 12.755637556578876, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-14T01:50:36.969459"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:304e9a622c8bb0302708b416ddd0adbf2216ac0cc0a685d8df1b54b2309a9eff
|
3 |
+
size 2381
|