Upload with usual hyperparameter
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +1 -1
- a2c-PandaReachDense-v2/system_info.txt +4 -4
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -2.07 +/- 0.76
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7367bd618c06d8522f101ab6114dfd35d9445e0c6d79069fd2e284b227da3ad6
|
3 |
+
size 108063
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc._abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -24,19 +24,19 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
-
":serialized:": "
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
-
":serialized:": "
|
37 |
-
"achieved_goal": "[[
|
38 |
-
"desired_goal": "[[-0.
|
39 |
-
"observation": "[[ 0.
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -44,9 +44,9 @@
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
-
"desired_goal": "[[
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
@@ -56,7 +56,7 @@
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
@@ -72,7 +72,7 @@
|
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
74 |
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
-
":serialized:": "
|
76 |
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
"_shape": null,
|
78 |
"dtype": null,
|
@@ -80,7 +80,7 @@
|
|
80 |
},
|
81 |
"action_space": {
|
82 |
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
-
":serialized:": "
|
84 |
"dtype": "float32",
|
85 |
"_shape": [
|
86 |
3
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc104375900>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc10436e800>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1686740589714645516,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"lr_schedule": {
|
31 |
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
},
|
34 |
"_last_obs": {
|
35 |
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACqPUPhzEKjuVlwI/CqPUPhzEKjuVlwI/CqPUPhzEKjuVlwI/CqPUPhzEKjuVlwI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyOECvzKvhL/frsI9/dKUPiZLkz6LUsW/Jl2kv/2Rir/Yb7o9XLInvz8ssT+J+5E+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKo9Q+HMQqO5WXAj/P8SQ7/XU6O833m7sKo9Q+HMQqO5WXAj/P8SQ7/XU6O833m7sKo9Q+HMQqO5WXAj/P8SQ7/XU6O833m7sKo9Q+HMQqO5WXAj/P8SQ7/XU6O833m7uUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.4153064 0.00260568 0.51012546]\n [0.4153064 0.00260568 0.51012546]\n [0.4153064 0.00260568 0.51012546]\n [0.4153064 0.00260568 0.51012546]]",
|
38 |
+
"desired_goal": "[[-0.51125765 -1.0365965 0.0950601 ]\n [ 0.2906722 0.2876827 -1.5415815 ]\n [-1.2840927 -1.0825802 0.09103364]\n [-0.6550653 1.3841628 0.2851222 ]]",
|
39 |
+
"observation": "[[ 0.4153064 0.00260568 0.51012546 0.00251685 0.00284517 -0.00475976]\n [ 0.4153064 0.00260568 0.51012546 0.00251685 0.00284517 -0.00475976]\n [ 0.4153064 0.00260568 0.51012546 0.00251685 0.00284517 -0.00475976]\n [ 0.4153064 0.00260568 0.51012546 0.00251685 0.00284517 -0.00475976]]"
|
40 |
},
|
41 |
"_last_episode_starts": {
|
42 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
44 |
},
|
45 |
"_last_original_obs": {
|
46 |
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAp+RlPQKFuDyJZYU9U3fBvYcJ8z3oLxk+xggTPoI8uj0raD89NhnGPTgq7r3ug1Q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.05612626 0.02252436 0.06513507]\n [-0.09446587 0.11867052 0.14959681]\n [ 0.14358816 0.09093572 0.0467302 ]\n [ 0.09672777 -0.11629146 0.20753452]]",
|
50 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
},
|
52 |
"_episode_num": 0,
|
|
|
56 |
"_stats_window_size": 100,
|
57 |
"ep_info_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA1slWBxO9r+UhpRSlIwBbJRLMowBdJRHQKekAvECNjt1fZQoaAZoCWgPQwhi+IiYEikDwJSGlFKUaBVLMmgWR0Cno7BTn7pFdX2UKGgGaAloD0MIUps4ud/hBMCUhpRSlGgVSzJoFkdAp6NZhKDkEXV9lChoBmgJaA9DCHwKgPEM2gPAlIaUUpRoFUsyaBZHQKejA2hIvrZ1fZQoaAZoCWgPQwhEb/HwngP4v5SGlFKUaBVLMmgWR0CnpQUo0ALidX2UKGgGaAloD0MIT3Rd+MHZAcCUhpRSlGgVSzJoFkdAp6Sx2B8QZnV9lChoBmgJaA9DCDHsMCb9vQDAlIaUUpRoFUsyaBZHQKekWuV5a/11fZQoaAZoCWgPQwjTvU7qy9L8v5SGlFKUaBVLMmgWR0CnpAT3h4t6dX2UKGgGaAloD0MIFNGvrZ8+/7+UhpRSlGgVSzJoFkdAp6YAydnTRnV9lChoBmgJaA9DCK7VHvZCgQLAlIaUUpRoFUsyaBZHQKelrYmsvIx1fZQoaAZoCWgPQwiH30237DACwJSGlFKUaBVLMmgWR0CnpVbOeJ53dX2UKGgGaAloD0MIlN43vvZM5L+UhpRSlGgVSzJoFkdAp6UA2Q4jr3V9lChoBmgJaA9DCDatFAK5ZALAlIaUUpRoFUsyaBZHQKem/DKoybh1fZQoaAZoCWgPQwjuemmKAKcAwJSGlFKUaBVLMmgWR0CnpqklNUOvdX2UKGgGaAloD0MI+rfLft3p6b+UhpRSlGgVSzJoFkdAp6ZScG1QZXV9lChoBmgJaA9DCL+36c9+pPa/lIaUUpRoFUsyaBZHQKel/CEYfnx1fZQoaAZoCWgPQwjIQnQIHOkBwJSGlFKUaBVLMmgWR0Cnp/JyIYWMdX2UKGgGaAloD0MIaXHGMCcoB8CUhpRSlGgVSzJoFkdAp6efQdCE6HV9lChoBmgJaA9DCASqfxDJUAPAlIaUUpRoFUsyaBZHQKenSD6Fds11fZQoaAZoCWgPQwgmV7H4TUECwJSGlFKUaBVLMmgWR0CnpvIAfdRBdX2UKGgGaAloD0MIcsPvplv2+7+UhpRSlGgVSzJoFkdAp6jwxi5NGnV9lChoBmgJaA9DCNr/AGvVTg7AlIaUUpRoFUsyaBZHQKeonWPtD2J1fZQoaAZoCWgPQwiL/WX35OH0v5SGlFKUaBVLMmgWR0CnqEaxxDLKdX2UKGgGaAloD0MI7N6KxAR1/L+UhpRSlGgVSzJoFkdAp6fwaxX4kHV9lChoBmgJaA9DCNBFQ8aj9AbAlIaUUpRoFUsyaBZHQKep2hRqGlB1fZQoaAZoCWgPQwjXhopx/gYAwJSGlFKUaBVLMmgWR0CnqYcCo0hvdX2UKGgGaAloD0MIbjKqDOMu+7+UhpRSlGgVSzJoFkdAp6kwFJQLu3V9lChoBmgJaA9DCM+ey9QkOPq/lIaUUpRoFUsyaBZHQKeo2hcqvvB1fZQoaAZoCWgPQwg9uaZAZifyv5SGlFKUaBVLMmgWR0CnqtoLXtjTdX2UKGgGaAloD0MIOxxdpbsLAMCUhpRSlGgVSzJoFkdAp6qHBxgiNnV9lChoBmgJaA9DCOMXXknyXPK/lIaUUpRoFUsyaBZHQKeqMGvfTCt1fZQoaAZoCWgPQwi1pKMczOb7v5SGlFKUaBVLMmgWR0CnqdpN0vGqdX2UKGgGaAloD0MIlWBxOPNr/r+UhpRSlGgVSzJoFkdAp6vH9P1tf3V9lChoBmgJaA9DCG6HhsWo6/6/lIaUUpRoFUsyaBZHQKerdJBgNPR1fZQoaAZoCWgPQwjB4Jo7+p8AwJSGlFKUaBVLMmgWR0Cnqx2x6fJ4dX2UKGgGaAloD0MIgXwJFRyeAMCUhpRSlGgVSzJoFkdAp6rHb0voNnV9lChoBmgJaA9DCIJUih2NAwTAlIaUUpRoFUsyaBZHQKessumJm/Z1fZQoaAZoCWgPQwj+X3XkSEcDwJSGlFKUaBVLMmgWR0CnrF/LLZBcdX2UKGgGaAloD0MIoZ4+An+4A8CUhpRSlGgVSzJoFkdAp6wI2ycCo3V9lChoBmgJaA9DCFOUS+MXHv2/lIaUUpRoFUsyaBZHQKerssMAmzB1fZQoaAZoCWgPQwi9pgcFpaj+v5SGlFKUaBVLMmgWR0CnrbYrBj4IdX2UKGgGaAloD0MIn7DEA8pmDMCUhpRSlGgVSzJoFkdAp61i0dBBzHV9lChoBmgJaA9DCOay0Tk/JQPAlIaUUpRoFUsyaBZHQKetC/N7jT91fZQoaAZoCWgPQwiHi9zT1Z0BwJSGlFKUaBVLMmgWR0CnrLXFkxyodX2UKGgGaAloD0MIzHucacKWBcCUhpRSlGgVSzJoFkdAp67BFgDzRXV9lChoBmgJaA9DCF2HakqyLgHAlIaUUpRoFUsyaBZHQKeubc1wYLt1fZQoaAZoCWgPQwhcOuY8Y78AwJSGlFKUaBVLMmgWR0CnrhcdYGMXdX2UKGgGaAloD0MIKjbmdcRh9L+UhpRSlGgVSzJoFkdAp63A3eenRHV9lChoBmgJaA9DCAWk/Q+wFv2/lIaUUpRoFUsyaBZHQKevs2FWXC11fZQoaAZoCWgPQwhOCYhJuLAFwJSGlFKUaBVLMmgWR0Cnr2AAZKnOdX2UKGgGaAloD0MIfCqnPSVn/b+UhpRSlGgVSzJoFkdAp68JJGvwE3V9lChoBmgJaA9DCIfboWExagDAlIaUUpRoFUsyaBZHQKeusu14Pf91fZQoaAZoCWgPQwh5HtydtdsBwJSGlFKUaBVLMmgWR0CnsJ4xUNrkdX2UKGgGaAloD0MIK6Im+nw0A8CUhpRSlGgVSzJoFkdAp7BKyhSLqHV9lChoBmgJaA9DCPgcWI6QQfS/lIaUUpRoFUsyaBZHQKev886mwaB1fZQoaAZoCWgPQwjRI0bPLXT7v5SGlFKUaBVLMmgWR0Cnr52RzRx+dX2UKGgGaAloD0MI6rRug9pv8L+UhpRSlGgVSzJoFkdAp7GZQpF1CHV9lChoBmgJaA9DCIgq/BneLOu/lIaUUpRoFUsyaBZHQKexRh1klNV1fZQoaAZoCWgPQwg9C0J5H4f6v5SGlFKUaBVLMmgWR0CnsO9sSCe3dX2UKGgGaAloD0MIrfwyGCOS97+UhpRSlGgVSzJoFkdAp7CZamoBJnV9lChoBmgJaA9DCPFL/byp6ADAlIaUUpRoFUsyaBZHQKezM1YQrc11fZQoaAZoCWgPQwg164zvi8vwv5SGlFKUaBVLMmgWR0CnsuEQXhwVdX2UKGgGaAloD0MIgZcZNsp697+UhpRSlGgVSzJoFkdAp7KLKzRhMXV9lChoBmgJaA9DCBUA4xk0NAHAlIaUUpRoFUsyaBZHQKeyNbYbsGB1fZQoaAZoCWgPQwhjtI6qJoj8v5SGlFKUaBVLMmgWR0CntSEcjqwAdX2UKGgGaAloD0MIkPgVa7jI/L+UhpRSlGgVSzJoFkdAp7TOz+m3v3V9lChoBmgJaA9DCNgpVg3CHPe/lIaUUpRoFUsyaBZHQKe0em5UcXF1fZQoaAZoCWgPQwgKhnMNM3T5v5SGlFKUaBVLMmgWR0CntCVqN6w/dX2UKGgGaAloD0MIC19f61Kj+r+UhpRSlGgVSzJoFkdAp7a6lP8AJnV9lChoBmgJaA9DCKN4lbVNcf2/lIaUUpRoFUsyaBZHQKe2agHu7Yl1fZQoaAZoCWgPQwgdsKvJU9b1v5SGlFKUaBVLMmgWR0CnthQv6CUYdX2UKGgGaAloD0MIGvonuFixC8CUhpRSlGgVSzJoFkdAp7XANEw353V9lChoBmgJaA9DCFWGcTeI1v2/lIaUUpRoFUsyaBZHQKe4YaisXBR1fZQoaAZoCWgPQwhwBn+/mG38v5SGlFKUaBVLMmgWR0CnuA8V58jSdX2UKGgGaAloD0MIgjl6/N7mB8CUhpRSlGgVSzJoFkdAp7e4v38GcHV9lChoBmgJaA9DCN0Ii4o4Xfm/lIaUUpRoFUsyaBZHQKe3YxmkFfR1fZQoaAZoCWgPQwg/br98sqIBwJSGlFKUaBVLMmgWR0CnukMpw0fpdX2UKGgGaAloD0MIcR5OYDot/r+UhpRSlGgVSzJoFkdAp7nwwTM7l3V9lChoBmgJaA9DCFUyAFRx4/O/lIaUUpRoFUsyaBZHQKe5ms6JZW91fZQoaAZoCWgPQwgukKD4MSb5v5SGlFKUaBVLMmgWR0CnuUXNcGC7dX2UKGgGaAloD0MIAaWhRiHJ+b+UhpRSlGgVSzJoFkdAp7vrt3OfNHV9lChoBmgJaA9DCM7HtaFinPq/lIaUUpRoFUsyaBZHQKe7mP8yeqd1fZQoaAZoCWgPQwgonUgw1Qz+v5SGlFKUaBVLMmgWR0Cnu0NH6MzedX2UKGgGaAloD0MIF9aNd0eG+b+UhpRSlGgVSzJoFkdAp7ruC9RJmXV9lChoBmgJaA9DCCGx3T1AtwDAlIaUUpRoFUsyaBZHQKe9fVGTcIt1fZQoaAZoCWgPQwj8icqGNdX5v5SGlFKUaBVLMmgWR0CnvSn5zo2XdX2UKGgGaAloD0MISWb1DrdDAcCUhpRSlGgVSzJoFkdAp7zTKaG5+nV9lChoBmgJaA9DCNUI/Uy9bva/lIaUUpRoFUsyaBZHQKe8fPE87p51fZQoaAZoCWgPQwgBFY4glcIDwJSGlFKUaBVLMmgWR0CnvncLKFIvdX2UKGgGaAloD0MIFOtU+Z4xCcCUhpRSlGgVSzJoFkdAp74jxG2CunV9lChoBmgJaA9DCLzplh3iHwLAlIaUUpRoFUsyaBZHQKe9zRfF72N1fZQoaAZoCWgPQwhgzJasitABwJSGlFKUaBVLMmgWR0CnvXcq4H5adX2UKGgGaAloD0MIJCu/DMaI87+UhpRSlGgVSzJoFkdAp797fWMCLnV9lChoBmgJaA9DCF5kAn6NJP2/lIaUUpRoFUsyaBZHQKe/KD5CWu51fZQoaAZoCWgPQwjdXz3uW239v5SGlFKUaBVLMmgWR0CnvtG0eEIxdX2UKGgGaAloD0MIjPUNTG6U9b+UhpRSlGgVSzJoFkdAp757nmq5snV9lChoBmgJaA9DCGTqruyCAfy/lIaUUpRoFUsyaBZHQKfAdQjUuth1fZQoaAZoCWgPQwg/rDdqhekAwJSGlFKUaBVLMmgWR0CnwCGecx0udX2UKGgGaAloD0MIJO8cylA1A8CUhpRSlGgVSzJoFkdAp7/K6z3RHHV9lChoBmgJaA9DCI1HqYQn9Pq/lIaUUpRoFUsyaBZHQKe/dK/VRUF1ZS4="
|
60 |
},
|
61 |
"ep_success_buffer": {
|
62 |
":type:": "<class 'collections.deque'>",
|
|
|
72 |
"normalize_advantage": false,
|
73 |
"observation_space": {
|
74 |
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
"_shape": null,
|
78 |
"dtype": null,
|
|
|
80 |
},
|
81 |
"action_space": {
|
82 |
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
"dtype": "float32",
|
85 |
"_shape": [
|
86 |
3
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67676227bfa1efcbb098172428a43b5537fba6f4562b647e537daad39a1c91bd
|
3 |
+
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c70a107035e98dc1f46d1f884ba6618ee84b31f8d7698187e2e3f7c738abd8b7
|
3 |
size 46014
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
- OS: Linux-5.
|
2 |
-
- Python: 3.
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
-
- PyTorch:
|
5 |
- GPU Enabled: True
|
6 |
-
- Numpy: 1.
|
7 |
- Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f2c36440d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2c36441a40>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686730621574945900, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV8QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXy9ob21lL3NhbG1hbXVuL21pbmljb25kYTMvZW52cy9oZi9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgkMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxfL2hvbWUvc2FsbWFtdW4vbWluaWNvbmRhMy9lbnZzL2hmL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAOWXgPosHe73h6wc/OWXgPosHe73h6wc/OWXgPosHe73h6wc/OWXgPosHe73h6wc/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAApNyavu34gb368yg/CXiFP/yBwj+xuaK/RusdP90SbT832Ra/kZ01vvuYNT9tWg6/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA5ZeA+iwd7veHrBz+dIIc8+VlMvBJXpjw5ZeA+iwd7veHrBz+dIIc8+VlMvBJXpjw5ZeA+iwd7veHrBz+dIIc8+VlMvBJXpjw5ZeA+iwd7veHrBz+dIIc8+VlMvBJXpjyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.43827227 -0.06128649 0.530943 ]\n [ 0.43827227 -0.06128649 0.530943 ]\n [ 0.43827227 -0.06128649 0.530943 ]\n [ 0.43827227 -0.06128649 0.530943 ]]", "desired_goal": "[[-0.3024646 -0.06346307 0.6599728 ]\n [ 1.0427257 1.5195918 -1.2712919 ]\n [ 0.61687124 0.9260691 -0.58925194]\n [-0.17735888 0.70936555 -0.5560673 ]]", "observation": "[[ 0.43827227 -0.06128649 0.530943 0.01649504 -0.01247262 0.02030519]\n [ 0.43827227 -0.06128649 0.530943 0.01649504 -0.01247262 0.02030519]\n [ 0.43827227 -0.06128649 0.530943 0.01649504 -0.01247262 0.02030519]\n [ 0.43827227 -0.06128649 0.530943 0.01649504 -0.01247262 0.02030519]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAP8FEvBZZ8DvaLEs9Bx4pPfEMwT0ZRY4+fHsRPq4bND15HFY8H3IgPcwkLj0qyXc9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.01200896 0.00733484 0.04960332]\n [ 0.0412884 0.09426297 0.27787092]\n [ 0.14207262 0.04397171 0.01306831]\n [ 0.03917133 0.04251556 0.06049458]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIK/nYXaAUFcCUhpRSlIwBbJRLMowBdJRHQKu2mC9RJmN1fZQoaAZoCWgPQwjzO01mvL0VwJSGlFKUaBVLMmgWR0Crtfgbp/wzdX2UKGgGaAloD0MIrfwyGCMCE8CUhpRSlGgVSzJoFkdAq7ViqABkqnV9lChoBmgJaA9DCGmQgqeQ+xHAlIaUUpRoFUsyaBZHQKu00ygPEsJ1fZQoaAZoCWgPQwiuZp3xfaESwJSGlFKUaBVLMmgWR0Crt7plSS/1dX2UKGgGaAloD0MIiC8TRUh9FcCUhpRSlGgVSzJoFkdAq7caaEzwdHV9lChoBmgJaA9DCH+jHTf8Dg/AlIaUUpRoFUsyaBZHQKu2hSPU8V51fZQoaAZoCWgPQwjCvTJv1dUIwJSGlFKUaBVLMmgWR0CrtfWuPmxMdX2UKGgGaAloD0MI3uaNk8KsEMCUhpRSlGgVSzJoFkdAq7k1y7wrlXV9lChoBmgJaA9DCKacL/ZeTBLAlIaUUpRoFUsyaBZHQKu4lbkfcN91fZQoaAZoCWgPQwipTDEHQecTwJSGlFKUaBVLMmgWR0CruAA5zYEodX2UKGgGaAloD0MIchqiCn/G+7+UhpRSlGgVSzJoFkdAq7dxYcNpd3V9lChoBmgJaA9DCA01CklmNRHAlIaUUpRoFUsyaBZHQKu6X7+DOC51fZQoaAZoCWgPQwgdWfllMKYSwJSGlFKUaBVLMmgWR0Crub+Zw4sFdX2UKGgGaAloD0MIfc7drpf2EcCUhpRSlGgVSzJoFkdAq7kqB5HEuXV9lChoBmgJaA9DCMTuO4bHbhvAlIaUUpRoFUsyaBZHQKu4mmNR3vB1fZQoaAZoCWgPQwh8CoDxDBoMwJSGlFKUaBVLMmgWR0Cru6rowEhadX2UKGgGaAloD0MIYTJVMCopAsCUhpRSlGgVSzJoFkdAq7sLnLaEjHV9lChoBmgJaA9DCDCCxkyibhXAlIaUUpRoFUsyaBZHQKu6dhhH9WJ1fZQoaAZoCWgPQwgaw5ygTX4XwJSGlFKUaBVLMmgWR0CruebL+xW1dX2UKGgGaAloD0MIEEBqEyfHEcCUhpRSlGgVSzJoFkdAq7zrBZZB9nV9lChoBmgJaA9DCJHWGHRCqPO/lIaUUpRoFUsyaBZHQKu8S9cKPXF1fZQoaAZoCWgPQwgAOWHCaLYUwJSGlFKUaBVLMmgWR0Cru7azmfXgdX2UKGgGaAloD0MIg9pv7US5EMCUhpRSlGgVSzJoFkdAq7snPZ7HAHV9lChoBmgJaA9DCJ3VAntMdBPAlIaUUpRoFUsyaBZHQKu+PS+g13t1fZQoaAZoCWgPQwhFnE6y1WUKwJSGlFKUaBVLMmgWR0CrvZ2Bz3h5dX2UKGgGaAloD0MIx4MtdvusG8CUhpRSlGgVSzJoFkdAq70H/cWTHXV9lChoBmgJaA9DCEHXvoBe+BPAlIaUUpRoFUsyaBZHQKu8eHt4RmN1fZQoaAZoCWgPQwhdqPxreVUSwJSGlFKUaBVLMmgWR0Crv596C17ZdX2UKGgGaAloD0MIa9jviXU6EMCUhpRSlGgVSzJoFkdAq77/VI7NjnV9lChoBmgJaA9DCJhRLLe0qhXAlIaUUpRoFUsyaBZHQKu+adhAnlZ1fZQoaAZoCWgPQwjA7J48LHQbwJSGlFKUaBVLMmgWR0Crvdo0qH45dX2UKGgGaAloD0MIgQncupvHF8CUhpRSlGgVSzJoFkdAq8C93bEgn3V9lChoBmgJaA9DCKSLTSuFUBfAlIaUUpRoFUsyaBZHQKvAHiIcinp1fZQoaAZoCWgPQwg9ghspW8QRwJSGlFKUaBVLMmgWR0Crv4lZHNHIdX2UKGgGaAloD0MIpzy6ERblE8CUhpRSlGgVSzJoFkdAq7757E5yVHV9lChoBmgJaA9DCLUy4Zf6+RPAlIaUUpRoFUsyaBZHQKvCLYSQHRl1fZQoaAZoCWgPQwiSH/Er1qAQwJSGlFKUaBVLMmgWR0CrwY4NI9TxdX2UKGgGaAloD0MIr2Ab8WSXBcCUhpRSlGgVSzJoFkdAq8D5LTQVsXV9lChoBmgJaA9DCOhKBKp/8BHAlIaUUpRoFUsyaBZHQKvAaaUA1el1fZQoaAZoCWgPQwhSLLe0GlILwJSGlFKUaBVLMmgWR0Crw1urZJ05dX2UKGgGaAloD0MIdej0vBsLGsCUhpRSlGgVSzJoFkdAq8K7hYNiIHV9lChoBmgJaA9DCAGloUYh6RnAlIaUUpRoFUsyaBZHQKvCJgflp491fZQoaAZoCWgPQwitbB/ylosQwJSGlFKUaBVLMmgWR0CrwZaMJhOQdX2UKGgGaAloD0MIyZHOwMirFMCUhpRSlGgVSzJoFkdAq8Rykj5bhXV9lChoBmgJaA9DCHehuU4jzRHAlIaUUpRoFUsyaBZHQKvD0pgCwKV1fZQoaAZoCWgPQwgaaam8HfERwJSGlFKUaBVLMmgWR0Crwz0p3HJcdX2UKGgGaAloD0MId5/jo8V5FsCUhpRSlGgVSzJoFkdAq8KtoSL613V9lChoBmgJaA9DCK3AkNWtLhDAlIaUUpRoFUsyaBZHQKvFmnNxEOR1fZQoaAZoCWgPQwim7V9ZafIVwJSGlFKUaBVLMmgWR0CrxPpaiblSdX2UKGgGaAloD0MIotKImX0eD8CUhpRSlGgVSzJoFkdAq8RkxREWqXV9lChoBmgJaA9DCMbAOo4fGhvAlIaUUpRoFUsyaBZHQKvD1Sqlxfh1fZQoaAZoCWgPQwhfRrHc0noQwJSGlFKUaBVLMmgWR0CrxqJaRp1zdX2UKGgGaAloD0MIf9+/eXFSGMCUhpRSlGgVSzJoFkdAq8YCaoddV3V9lChoBmgJaA9DCLn8h/TbdxHAlIaUUpRoFUsyaBZHQKvFbOZb6gx1fZQoaAZoCWgPQwjKF7SQgIEYwJSGlFKUaBVLMmgWR0CrxN1U+9rXdX2UKGgGaAloD0MIRQ4RN6fSFMCUhpRSlGgVSzJoFkdAq8ex1PnB+HV9lChoBmgJaA9DCDNv1XWoRhLAlIaUUpRoFUsyaBZHQKvHEavzOHF1fZQoaAZoCWgPQwgixmte1QkUwJSGlFKUaBVLMmgWR0CrxnwUpNKzdX2UKGgGaAloD0MIb2dfeZCeGMCUhpRSlGgVSzJoFkdAq8Xst9QXRHV9lChoBmgJaA9DCHh95qxPGQ3AlIaUUpRoFUsyaBZHQKvI6AEt/Wl1fZQoaAZoCWgPQwh+4ZUkz/UTwJSGlFKUaBVLMmgWR0CryEfqHGjsdX2UKGgGaAloD0MI6wHzkCnPFMCUhpRSlGgVSzJoFkdAq8eyjcmBv3V9lChoBmgJaA9DCA1slWBxGBLAlIaUUpRoFUsyaBZHQKvHIz8gpz91fZQoaAZoCWgPQwg6kPXU6msOwJSGlFKUaBVLMmgWR0Cryl3zlLezdX2UKGgGaAloD0MIcEIhAg4BDcCUhpRSlGgVSzJoFkdAq8m+I68xsXV9lChoBmgJaA9DCBsrMc9Kmg/AlIaUUpRoFUsyaBZHQKvJKOf/WDp1fZQoaAZoCWgPQwgUd7zJb4EXwJSGlFKUaBVLMmgWR0CryJm16Vt5dX2UKGgGaAloD0MI+GuyRj1E/r+UhpRSlGgVSzJoFkdAq8vWYQarFXV9lChoBmgJaA9DCJqV7UPeAhjAlIaUUpRoFUsyaBZHQKvLNl2/zrh1fZQoaAZoCWgPQwiXj6Skh0EYwJSGlFKUaBVLMmgWR0CryqD/2kBTdX2UKGgGaAloD0MIBoNr7ug/C8CUhpRSlGgVSzJoFkdAq8oRkf9xZXV9lChoBmgJaA9DCDhJ88e0dhLAlIaUUpRoFUsyaBZHQKvNEZuyeI51fZQoaAZoCWgPQwj/W8mOjQAPwJSGlFKUaBVLMmgWR0CrzHGoR7JGdX2UKGgGaAloD0MItmeWBKgpGcCUhpRSlGgVSzJoFkdAq8vcRg7YCnV9lChoBmgJaA9DCPNxbagYRwPAlIaUUpRoFUsyaBZHQKvLTabnX/Z1fZQoaAZoCWgPQwgy5Nh6hhAOwJSGlFKUaBVLMmgWR0CrzkTDn/1hdX2UKGgGaAloD0MIeNMtO8R/CsCUhpRSlGgVSzJoFkdAq82lXJYDDHV9lChoBmgJaA9DCKeWrfVFkhnAlIaUUpRoFUsyaBZHQKvND8Jlar51fZQoaAZoCWgPQwjx12SNejgRwJSGlFKUaBVLMmgWR0CrzIAjY7JXdX2UKGgGaAloD0MIF+/H7ZffFMCUhpRSlGgVSzJoFkdAq89pWo3rEHV9lChoBmgJaA9DCIEExY8x5xLAlIaUUpRoFUsyaBZHQKvOyWvbGm11fZQoaAZoCWgPQwi0WfW52roSwJSGlFKUaBVLMmgWR0CrzjP+fh/BdX2UKGgGaAloD0MIqFMe3QgrD8CUhpRSlGgVSzJoFkdAq82kmx+rl3V9lChoBmgJaA9DCLx4P26/vAvAlIaUUpRoFUsyaBZHQKvQmmMwUQF1fZQoaAZoCWgPQwjwFHKlnkUXwJSGlFKUaBVLMmgWR0Crz/pPRArydX2UKGgGaAloD0MIkSi0rPsnBsCUhpRSlGgVSzJoFkdAq89lgtvn83V9lChoBmgJaA9DCJm5wOWx5hDAlIaUUpRoFUsyaBZHQKvO1fgJkXl1fZQoaAZoCWgPQwhTexFtxzQXwJSGlFKUaBVLMmgWR0Cr0bqYiPhidX2UKGgGaAloD0MIcobijjeZDcCUhpRSlGgVSzJoFkdAq9EacPOIInV9lChoBmgJaA9DCD9Tr1sEdhHAlIaUUpRoFUsyaBZHQKvQhSbYsd11fZQoaAZoCWgPQwjCNAwfETMIwJSGlFKUaBVLMmgWR0Crz/V9Wp6ydX2UKGgGaAloD0MIMzSeCOLcDsCUhpRSlGgVSzJoFkdAq9LG2PT5PHV9lChoBmgJaA9DCOkmMQisjBXAlIaUUpRoFUsyaBZHQKvSJwPRRdh1fZQoaAZoCWgPQwiRYoBEE4gOwJSGlFKUaBVLMmgWR0Cr0ZGGVRk3dX2UKGgGaAloD0MIIoyfxr25E8CUhpRSlGgVSzJoFkdAq9ECIYWLxnV9lChoBmgJaA9DCJ0Rpb3Blw/AlIaUUpRoFUsyaBZHQKvT71xKg7J1fZQoaAZoCWgPQwgjopi8ASYPwJSGlFKUaBVLMmgWR0Cr00+LFXJYdX2UKGgGaAloD0MID0JAvoS6GcCUhpRSlGgVSzJoFkdAq9K6fvnbI3V9lChoBmgJaA9DCC8X8Z2Y9Q/AlIaUUpRoFUsyaBZHQKvSK3Td+G51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.16.3-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Fri Apr 2 22:23:49 UTC 2021", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fc104375900>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fc10436e800>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686740589714645516, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAACqPUPhzEKjuVlwI/CqPUPhzEKjuVlwI/CqPUPhzEKjuVlwI/CqPUPhzEKjuVlwI/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAyOECvzKvhL/frsI9/dKUPiZLkz6LUsW/Jl2kv/2Rir/Yb7o9XLInvz8ssT+J+5E+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAAKo9Q+HMQqO5WXAj/P8SQ7/XU6O833m7sKo9Q+HMQqO5WXAj/P8SQ7/XU6O833m7sKo9Q+HMQqO5WXAj/P8SQ7/XU6O833m7sKo9Q+HMQqO5WXAj/P8SQ7/XU6O833m7uUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.4153064 0.00260568 0.51012546]\n [0.4153064 0.00260568 0.51012546]\n [0.4153064 0.00260568 0.51012546]\n [0.4153064 0.00260568 0.51012546]]", "desired_goal": "[[-0.51125765 -1.0365965 0.0950601 ]\n [ 0.2906722 0.2876827 -1.5415815 ]\n [-1.2840927 -1.0825802 0.09103364]\n [-0.6550653 1.3841628 0.2851222 ]]", "observation": "[[ 0.4153064 0.00260568 0.51012546 0.00251685 0.00284517 -0.00475976]\n [ 0.4153064 0.00260568 0.51012546 0.00251685 0.00284517 -0.00475976]\n [ 0.4153064 0.00260568 0.51012546 0.00251685 0.00284517 -0.00475976]\n [ 0.4153064 0.00260568 0.51012546 0.00251685 0.00284517 -0.00475976]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAp+RlPQKFuDyJZYU9U3fBvYcJ8z3oLxk+xggTPoI8uj0raD89NhnGPTgq7r3ug1Q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.05612626 0.02252436 0.06513507]\n [-0.09446587 0.11867052 0.14959681]\n [ 0.14358816 0.09093572 0.0467302 ]\n [ 0.09672777 -0.11629146 0.20753452]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIA1slWBxO9r+UhpRSlIwBbJRLMowBdJRHQKekAvECNjt1fZQoaAZoCWgPQwhi+IiYEikDwJSGlFKUaBVLMmgWR0Cno7BTn7pFdX2UKGgGaAloD0MIUps4ud/hBMCUhpRSlGgVSzJoFkdAp6NZhKDkEXV9lChoBmgJaA9DCHwKgPEM2gPAlIaUUpRoFUsyaBZHQKejA2hIvrZ1fZQoaAZoCWgPQwhEb/HwngP4v5SGlFKUaBVLMmgWR0CnpQUo0ALidX2UKGgGaAloD0MIT3Rd+MHZAcCUhpRSlGgVSzJoFkdAp6Sx2B8QZnV9lChoBmgJaA9DCDHsMCb9vQDAlIaUUpRoFUsyaBZHQKekWuV5a/11fZQoaAZoCWgPQwjTvU7qy9L8v5SGlFKUaBVLMmgWR0CnpAT3h4t6dX2UKGgGaAloD0MIFNGvrZ8+/7+UhpRSlGgVSzJoFkdAp6YAydnTRnV9lChoBmgJaA9DCK7VHvZCgQLAlIaUUpRoFUsyaBZHQKelrYmsvIx1fZQoaAZoCWgPQwiH30237DACwJSGlFKUaBVLMmgWR0CnpVbOeJ53dX2UKGgGaAloD0MIlN43vvZM5L+UhpRSlGgVSzJoFkdAp6UA2Q4jr3V9lChoBmgJaA9DCDatFAK5ZALAlIaUUpRoFUsyaBZHQKem/DKoybh1fZQoaAZoCWgPQwjuemmKAKcAwJSGlFKUaBVLMmgWR0CnpqklNUOvdX2UKGgGaAloD0MI+rfLft3p6b+UhpRSlGgVSzJoFkdAp6ZScG1QZXV9lChoBmgJaA9DCL+36c9+pPa/lIaUUpRoFUsyaBZHQKel/CEYfnx1fZQoaAZoCWgPQwjIQnQIHOkBwJSGlFKUaBVLMmgWR0Cnp/JyIYWMdX2UKGgGaAloD0MIaXHGMCcoB8CUhpRSlGgVSzJoFkdAp6efQdCE6HV9lChoBmgJaA9DCASqfxDJUAPAlIaUUpRoFUsyaBZHQKenSD6Fds11fZQoaAZoCWgPQwgmV7H4TUECwJSGlFKUaBVLMmgWR0CnpvIAfdRBdX2UKGgGaAloD0MIcsPvplv2+7+UhpRSlGgVSzJoFkdAp6jwxi5NGnV9lChoBmgJaA9DCNr/AGvVTg7AlIaUUpRoFUsyaBZHQKeonWPtD2J1fZQoaAZoCWgPQwiL/WX35OH0v5SGlFKUaBVLMmgWR0CnqEaxxDLKdX2UKGgGaAloD0MI7N6KxAR1/L+UhpRSlGgVSzJoFkdAp6fwaxX4kHV9lChoBmgJaA9DCNBFQ8aj9AbAlIaUUpRoFUsyaBZHQKep2hRqGlB1fZQoaAZoCWgPQwjXhopx/gYAwJSGlFKUaBVLMmgWR0CnqYcCo0hvdX2UKGgGaAloD0MIbjKqDOMu+7+UhpRSlGgVSzJoFkdAp6kwFJQLu3V9lChoBmgJaA9DCM+ey9QkOPq/lIaUUpRoFUsyaBZHQKeo2hcqvvB1fZQoaAZoCWgPQwg9uaZAZifyv5SGlFKUaBVLMmgWR0CnqtoLXtjTdX2UKGgGaAloD0MIOxxdpbsLAMCUhpRSlGgVSzJoFkdAp6qHBxgiNnV9lChoBmgJaA9DCOMXXknyXPK/lIaUUpRoFUsyaBZHQKeqMGvfTCt1fZQoaAZoCWgPQwi1pKMczOb7v5SGlFKUaBVLMmgWR0CnqdpN0vGqdX2UKGgGaAloD0MIlWBxOPNr/r+UhpRSlGgVSzJoFkdAp6vH9P1tf3V9lChoBmgJaA9DCG6HhsWo6/6/lIaUUpRoFUsyaBZHQKerdJBgNPR1fZQoaAZoCWgPQwjB4Jo7+p8AwJSGlFKUaBVLMmgWR0Cnqx2x6fJ4dX2UKGgGaAloD0MIgXwJFRyeAMCUhpRSlGgVSzJoFkdAp6rHb0voNnV9lChoBmgJaA9DCIJUih2NAwTAlIaUUpRoFUsyaBZHQKessumJm/Z1fZQoaAZoCWgPQwj+X3XkSEcDwJSGlFKUaBVLMmgWR0CnrF/LLZBcdX2UKGgGaAloD0MIoZ4+An+4A8CUhpRSlGgVSzJoFkdAp6wI2ycCo3V9lChoBmgJaA9DCFOUS+MXHv2/lIaUUpRoFUsyaBZHQKerssMAmzB1fZQoaAZoCWgPQwi9pgcFpaj+v5SGlFKUaBVLMmgWR0CnrbYrBj4IdX2UKGgGaAloD0MIn7DEA8pmDMCUhpRSlGgVSzJoFkdAp61i0dBBzHV9lChoBmgJaA9DCOay0Tk/JQPAlIaUUpRoFUsyaBZHQKetC/N7jT91fZQoaAZoCWgPQwiHi9zT1Z0BwJSGlFKUaBVLMmgWR0CnrLXFkxyodX2UKGgGaAloD0MIzHucacKWBcCUhpRSlGgVSzJoFkdAp67BFgDzRXV9lChoBmgJaA9DCF2HakqyLgHAlIaUUpRoFUsyaBZHQKeubc1wYLt1fZQoaAZoCWgPQwhcOuY8Y78AwJSGlFKUaBVLMmgWR0CnrhcdYGMXdX2UKGgGaAloD0MIKjbmdcRh9L+UhpRSlGgVSzJoFkdAp63A3eenRHV9lChoBmgJaA9DCAWk/Q+wFv2/lIaUUpRoFUsyaBZHQKevs2FWXC11fZQoaAZoCWgPQwhOCYhJuLAFwJSGlFKUaBVLMmgWR0Cnr2AAZKnOdX2UKGgGaAloD0MIfCqnPSVn/b+UhpRSlGgVSzJoFkdAp68JJGvwE3V9lChoBmgJaA9DCIfboWExagDAlIaUUpRoFUsyaBZHQKeusu14Pf91fZQoaAZoCWgPQwh5HtydtdsBwJSGlFKUaBVLMmgWR0CnsJ4xUNrkdX2UKGgGaAloD0MIK6Im+nw0A8CUhpRSlGgVSzJoFkdAp7BKyhSLqHV9lChoBmgJaA9DCPgcWI6QQfS/lIaUUpRoFUsyaBZHQKev886mwaB1fZQoaAZoCWgPQwjRI0bPLXT7v5SGlFKUaBVLMmgWR0Cnr52RzRx+dX2UKGgGaAloD0MI6rRug9pv8L+UhpRSlGgVSzJoFkdAp7GZQpF1CHV9lChoBmgJaA9DCIgq/BneLOu/lIaUUpRoFUsyaBZHQKexRh1klNV1fZQoaAZoCWgPQwg9C0J5H4f6v5SGlFKUaBVLMmgWR0CnsO9sSCe3dX2UKGgGaAloD0MIrfwyGCOS97+UhpRSlGgVSzJoFkdAp7CZamoBJnV9lChoBmgJaA9DCPFL/byp6ADAlIaUUpRoFUsyaBZHQKezM1YQrc11fZQoaAZoCWgPQwg164zvi8vwv5SGlFKUaBVLMmgWR0CnsuEQXhwVdX2UKGgGaAloD0MIgZcZNsp697+UhpRSlGgVSzJoFkdAp7KLKzRhMXV9lChoBmgJaA9DCBUA4xk0NAHAlIaUUpRoFUsyaBZHQKeyNbYbsGB1fZQoaAZoCWgPQwhjtI6qJoj8v5SGlFKUaBVLMmgWR0CntSEcjqwAdX2UKGgGaAloD0MIkPgVa7jI/L+UhpRSlGgVSzJoFkdAp7TOz+m3v3V9lChoBmgJaA9DCNgpVg3CHPe/lIaUUpRoFUsyaBZHQKe0em5UcXF1fZQoaAZoCWgPQwgKhnMNM3T5v5SGlFKUaBVLMmgWR0CntCVqN6w/dX2UKGgGaAloD0MIC19f61Kj+r+UhpRSlGgVSzJoFkdAp7a6lP8AJnV9lChoBmgJaA9DCKN4lbVNcf2/lIaUUpRoFUsyaBZHQKe2agHu7Yl1fZQoaAZoCWgPQwgdsKvJU9b1v5SGlFKUaBVLMmgWR0CnthQv6CUYdX2UKGgGaAloD0MIGvonuFixC8CUhpRSlGgVSzJoFkdAp7XANEw353V9lChoBmgJaA9DCFWGcTeI1v2/lIaUUpRoFUsyaBZHQKe4YaisXBR1fZQoaAZoCWgPQwhwBn+/mG38v5SGlFKUaBVLMmgWR0CnuA8V58jSdX2UKGgGaAloD0MIgjl6/N7mB8CUhpRSlGgVSzJoFkdAp7e4v38GcHV9lChoBmgJaA9DCN0Ii4o4Xfm/lIaUUpRoFUsyaBZHQKe3YxmkFfR1fZQoaAZoCWgPQwg/br98sqIBwJSGlFKUaBVLMmgWR0CnukMpw0fpdX2UKGgGaAloD0MIcR5OYDot/r+UhpRSlGgVSzJoFkdAp7nwwTM7l3V9lChoBmgJaA9DCFUyAFRx4/O/lIaUUpRoFUsyaBZHQKe5ms6JZW91fZQoaAZoCWgPQwgukKD4MSb5v5SGlFKUaBVLMmgWR0CnuUXNcGC7dX2UKGgGaAloD0MIAaWhRiHJ+b+UhpRSlGgVSzJoFkdAp7vrt3OfNHV9lChoBmgJaA9DCM7HtaFinPq/lIaUUpRoFUsyaBZHQKe7mP8yeqd1fZQoaAZoCWgPQwgonUgw1Qz+v5SGlFKUaBVLMmgWR0Cnu0NH6MzedX2UKGgGaAloD0MIF9aNd0eG+b+UhpRSlGgVSzJoFkdAp7ruC9RJmXV9lChoBmgJaA9DCCGx3T1AtwDAlIaUUpRoFUsyaBZHQKe9fVGTcIt1fZQoaAZoCWgPQwj8icqGNdX5v5SGlFKUaBVLMmgWR0CnvSn5zo2XdX2UKGgGaAloD0MISWb1DrdDAcCUhpRSlGgVSzJoFkdAp7zTKaG5+nV9lChoBmgJaA9DCNUI/Uy9bva/lIaUUpRoFUsyaBZHQKe8fPE87p51fZQoaAZoCWgPQwgBFY4glcIDwJSGlFKUaBVLMmgWR0CnvncLKFIvdX2UKGgGaAloD0MIFOtU+Z4xCcCUhpRSlGgVSzJoFkdAp74jxG2CunV9lChoBmgJaA9DCLzplh3iHwLAlIaUUpRoFUsyaBZHQKe9zRfF72N1fZQoaAZoCWgPQwhgzJasitABwJSGlFKUaBVLMmgWR0CnvXcq4H5adX2UKGgGaAloD0MIJCu/DMaI87+UhpRSlGgVSzJoFkdAp797fWMCLnV9lChoBmgJaA9DCF5kAn6NJP2/lIaUUpRoFUsyaBZHQKe/KD5CWu51fZQoaAZoCWgPQwjdXz3uW239v5SGlFKUaBVLMmgWR0CnvtG0eEIxdX2UKGgGaAloD0MIjPUNTG6U9b+UhpRSlGgVSzJoFkdAp757nmq5snV9lChoBmgJaA9DCGTqruyCAfy/lIaUUpRoFUsyaBZHQKfAdQjUuth1fZQoaAZoCWgPQwg/rDdqhekAwJSGlFKUaBVLMmgWR0CnwCGecx0udX2UKGgGaAloD0MIJO8cylA1A8CUhpRSlGgVSzJoFkdAp7/K6z3RHHV9lChoBmgJaA9DCI1HqYQn9Pq/lIaUUpRoFUsyaBZHQKe/dK/VRUF1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -2.0734991582110522, "std_reward": 0.7607424361704834, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-14T11:53:41.470798"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d6942450a9a202f39481db5802840f54e3d044d26ab6c8bce21084e87e1979a8
|
3 |
+
size 2387
|