File size: 1,825 Bytes
dda2d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae6bd31
dda2d87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae6bd31
dda2d87
 
ae6bd31
dda2d87
 
 
 
 
 
 
 
 
 
 
ae6bd31
 
 
 
 
dda2d87
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---

library_name: transformers
license: mit
base_model: microsoft/speecht5_tts
tags:
- generated_from_trainer
model-index:
- name: speecht5_finetuned_vietnamese
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# speecht5_finetuned_vietnamese

This model is a fine-tuned version of [microsoft/speecht5_tts](https://huggingface.co/microsoft/speecht5_tts) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5406

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001

- train_batch_size: 16

- eval_batch_size: 2

- seed: 42

- gradient_accumulation_steps: 2

- total_train_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100

- training_steps: 500
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.6213        | 0.0035 | 100  | 0.6012          |
| 0.6087        | 0.0069 | 200  | 0.5743          |
| 0.592         | 0.0104 | 300  | 0.5571          |
| 0.5708        | 0.0139 | 400  | 0.5512          |
| 0.5596        | 0.0173 | 500  | 0.5406          |


### Framework versions

- Transformers 4.47.0.dev0
- Pytorch 2.5.1
- Datasets 2.19.1
- Tokenizers 0.20.1