#!/usr/bin/env python3 import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline import re from num2words import num2words def log_results(result: Dataset, args: Dict[str, str]): """DO NOT CHANGE. This function computes and logs the result metrics.""" log_outputs = args.log_outputs dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split]) # load metric wer = load_metric("wer") cer = load_metric("cer") # compute metrics wer_result = wer.compute(references=result["target"], predictions=result["prediction"]) cer_result = cer.compute(references=result["target"], predictions=result["prediction"]) # print & log results result_str = f"WER: {wer_result}\n" f"CER: {cer_result}" print(result_str) with open(f"{dataset_id}_eval_results.txt", "w") as f: f.write(result_str) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: pred_file = f"log_{dataset_id}_predictions.txt" target_file = f"log_{dataset_id}_targets.txt" with open(pred_file, "w") as p, open(target_file, "w") as t: # mapping function to write output def write_to_file(batch, i): p.write(f"{i}" + "\n") p.write(batch["prediction"] + "\n") t.write(f"{i}" + "\n") t.write(batch["target"] + "\n") result.map(write_to_file, with_indices=True) def spell_num(text): l = [] for t in text.split(): if t.isdigit(): l.append(num2words(t, lang='de')) else: l.append(t) return ' '.join(l) ALLOWED_CHARS = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', 'ä', 'ö', 'ü', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ' ', ',', ';', ':', '.', '?', '!', } WHITESPACE_REGEX = re.compile(r'[ \t]+') def preprocess_transcript_for_corpus(transcript): transcript = transcript.lower() transcript = transcript.replace('á', 'a') transcript = transcript.replace('à', 'a') transcript = transcript.replace('â', 'a') transcript = transcript.replace('ç', 'c') transcript = transcript.replace('é', 'e') transcript = transcript.replace('è', 'e') transcript = transcript.replace('ê', 'e') transcript = transcript.replace('í', 'i') transcript = transcript.replace('ì', 'i') transcript = transcript.replace('î', 'i') transcript = transcript.replace('ñ', 'n') transcript = transcript.replace('ó', 'o') transcript = transcript.replace('ò', 'o') transcript = transcript.replace('ô', 'o') transcript = transcript.replace('ú', 'u') transcript = transcript.replace('ù', 'u') transcript = transcript.replace('û', 'u') transcript = transcript.replace('ș', 's') transcript = transcript.replace('ş', 's') transcript = transcript.replace('ß', 'ss') transcript = transcript.replace('-', ' ') # Not used consistently, better to replace with space as well transcript = transcript.replace('–', ' ') transcript = transcript.replace('/', ' ') transcript = WHITESPACE_REGEX.sub(' ', transcript) transcript = ''.join([char for char in transcript if char in ALLOWED_CHARS]) transcript = WHITESPACE_REGEX.sub(' ', transcript) transcript = spell_num(transcript) transcript = transcript.replace('ß', 'ss') transcript = transcript.strip() return transcript def normalize_text(text: str) -> str: """DO ADAPT FOR YOUR USE CASE. this function normalizes the target text.""" text = preprocess_transcript_for_corpus(txt) chars_to_ignore_regex = '[,?.!\-\;\:"“%‘”�—’…–]' text = re.sub(chars_to_ignore_regex, "", text.lower()) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! #token_sequences_to_ignore = ["\n\n", "\n", " ", " "] #for t in token_sequences_to_ignore: # text = " ".join(text.split(t)) return text.strip() def main(args): # load dataset dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id) sampling_rate = feature_extractor.sampling_rate # resample audio dataset = dataset.cast_column("audio", Audio(sampling_rate=sampling_rate)) # load eval pipeline if args.device is None: args.device = 0 if torch.cuda.is_available() else -1 asr = pipeline("automatic-speech-recognition", model=args.model_id, device=args.device) # map function to decode audio def map_to_pred(batch): prediction = asr( batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s ) batch["prediction"] = prediction["text"] batch["target"] = normalize_text(batch["sentence"]) return batch # run inference on all examples result = dataset.map(map_to_pred, remove_columns=dataset.column_names) # compute and log_results # do not change function below log_results(result, args) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers" ) parser.add_argument( "--dataset", type=str, required=True, help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets", ) parser.add_argument( "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice" ) parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`") parser.add_argument( "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds." ) parser.add_argument( "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second." ) parser.add_argument( "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis." ) parser.add_argument( "--device", type=int, default=None, help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.", ) args = parser.parse_args() main(args)