File size: 20,558 Bytes
e5488fe 5b057fe e5488fe 5b057fe e5488fe 5224a0a e5488fe 5224a0a e5488fe 5224a0a e5488fe 5224a0a e5488fe 5224a0a 8b16318 5224a0a 7e705ef 5224a0a 7e705ef 5224a0a 7e705ef 5224a0a 7e705ef 5224a0a 7e705ef e5488fe 5b057fe e5488fe 5b057fe e5488fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
---
base_model: sentence-transformers/all-MiniLM-L6-v2
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: Thank you for your email. Please go ahead and issue. Please invoice in KES
- text: Hi, We are missing some invoices, can you please provide it. 02 - 12 - 2020
AGENT FEE 8900784339018 $21.00 02 - 19 - 2020 AGENT FEE 0017417554160 $22.00 02
- 19 - 2020 AGENT FEE 0017417554143 $22.00 02 - 19 - 2020 AGENT FEE 8900783383420
$21.00
- text: We need your assistance with the payment for the recent office supplies order.
Let us know once it's done.
- text: I have reported this in November and not only was the trip supposed to be
cancelled and credited I was double billed and the billing has not been corrected.
The total credit should be $667.20. Please confirm this will be done.
- text: The invoice for the travel arrangements needs to be settled. Kindly provide
payment confirmation.
inference: true
---
# SetFit with sentence-transformers/all-MiniLM-L6-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 256 tokens
- **Number of Classes:** 14 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | <ul><li>'Please send me quotation for a flight for Lindelani Mkhize - East London/ Durban 31 August @ 12:00'</li><li>"I need to go to Fort Smith AR via XNA for PD days. I'd like to take AA 4064 at 10:00 am arriving 11:58 am on Monday, May 11 returning on AA 4064 at 12:26 pm arriving 2:16 pm on Saturday May 16. I will need a Hertz rental. I d like to stay at the Courtyard Marriott in Fort Smith on Monday through Thursday nights checking out on Friday morning."</li><li>'Can you please send me flight quotations for Mr Mthetho Sovara for travel to Bologna, Italy as per details below: 7 Oct: JHB to Bologna, Italy 14 Oct: Bologna, Italy to JHB'</li></ul> |
| 1 | <ul><li>'I need to cancel my flight booking from London Heathrow to JFK, New York, scheduled for August 15th, 2024. The booking reference is XJ12345.'</li><li>'Please cancel my flight for late March to Chicago and DC. Meetings have been cancelled. I am not available by phone.'</li><li>'I need to cancel the below trip due to illness in family. Could you please assist with this?'</li></ul> |
| 2 | <ul><li>'I need to change the departure time for my one-way flight from SFO to LAX on October 15th. Could you please reschedule it to a later flight around 6:00 PM on the same day?'</li><li>'Can you please extend my hotel reservation at the Marriott in Denver from November 19th to November 23rd, 2024? Originally, I was scheduled to check out on the 19th.'</li><li>"Lerato I checked Selbourne B/B, its not a nice place. Your colleague Stella booked Lindelani Mkhize in Hempston it's a beautiful place next to Garden Court, please change the accommodation from Selbourne to Hempston. This Selbourne is on the outskirt and my colleagues are not familiar with East London"</li></ul> |
| 3 | <ul><li>'Please add the below employee to our Concur system. In addition, make sure the Ghost Card is added into their profile. Lindsay Griffin [email protected]'</li><li>"Good afternoon - CAEP has 4 new staff members that we'd like to set - up new user profiles for. Please see the below information and let me know should anything additional be required. Last First Middle Travel Class Email Gender DOB Graham Rose - Helen Xiuqing Staff rose - [email protected] Female 6/14/1995 Gumbs Mary - Frances Akua Staff [email protected] Female 10/18/1995 Lee Elizabeth Andie Staff [email protected] Female 4/23/1991 Gilchrist Gabriel Jake Staff [email protected] Male"</li><li>'Good Morning, Please create a profile for Amelia West: Name: Amelia Jean - Danielle West DOB: 05/21/1987 PH: 202 - 997 - 6592 Email: [email protected]'</li></ul> |
| 4 | <ul><li>'Hi, My name is Lucia De Las Heras property accountant at Trion Properties. I am missing a few receipts to allocate the following charges. Would you please be able to provide a detailed invoice? 10/10/2019 FROSCH/GANT TRAVEL MBLOOMINGTON IN - 21'</li><li>'I would like to request an invoice/s for the above-mentioned employee who stayed at your establishment.'</li><li>"Hello, Looking for an invoice for the below charge to Ryan Schulke's card - could you please assist? Vendor: United Airlines Transaction Date: 02/04/2020 Amount: $2,132.07 Ticket Number: 0167515692834"</li></ul> |
| 5 | <ul><li>'This is the second email with this trip, but I still need an itinerary for trip scheduled for January 27. Derek'</li><li>'Please send us all the flights used by G4S Kenya in the year 2022. Sorry for the short notice but we need the information by 12:00 noon today.'</li><li>'Jen Holt Can you please send me the itinerary for Jen Holt for this trip this week to Jackson Mississippi?'</li></ul> |
| 6 | <ul><li>"I've had to call off my vacation. What are my options for getting refunded?"</li><li>"Looks like I won't be traveling due to some health issues. Is getting a refund for my booking possible?"</li><li>"I've fallen ill and can't travel as planned. Can you process a refund for me?"</li></ul> |
| 7 | <ul><li>'The arrangements as stated are acceptable. Please go ahead and confirm all bookings accordingly.'</li><li>"I've reviewed the details and everything seems in order. Please proceed with the booking."</li><li>'This travel plan is satisfactory. Please secure the necessary reservations.'</li></ul> |
| 8 | <ul><li>'I need some clarification on charges for a rebooked flight. It seems higher than anticipated. Who can provide more details?'</li><li>'Wishing you and your family a very Merry Christmas and a Happy and Healthy New Year. I have one unidentified item this month, hope you can help, and as always thanks in advance. Very limited information on this. 11/21/2019 #N/A #N/A #N/A 142.45 Rail Europe North Amer'</li><li>"We've identified a mismatch between our booking records and credit card statement. Who can assist with this issue?"</li></ul> |
| 9 | <ul><li>'I booked a hotel in Berlin for next month, but the confirmation email I received has the wrong dates. Can you please correct this and resend the confirmation?'</li><li>"I need to arrange a shuttle for our team from the airport to the conference venue, but I haven't received any confirmation yet. Can someone check on this for me?"</li><li>"When trying to book a flight for our CEO, the system shows an error stating 'payment not processed.' Can you assist in resolving this issue quickly?"</li></ul> |
| 10 | <ul><li>'Please assist with payment for the conference room booking at Hilton last week.'</li><li>'Kindly process the invoice for the catering services provided during the annual company meeting.'</li><li>"Supplier, please find a statement with all invoices listed due for the IT maintenance services. If you've already paid, please forward proof and date of payment. Thank you for your support."</li></ul> |
| 11 | <ul><li>"Congratulations! You've been selected to win a brand new iPhone 14. Click here to claim your prize now!"</li><li>'Get rich quick! Invest in our exclusive cryptocurrency and watch your money grow 10x in just a month. Limited time offer!'</li><li>'Your PayPal account has been compromised. Please click here to verify your information and secure your account.'</li></ul> |
| 12 | <ul><li>'Your flight booking has been confirmed. Flight details: Flight #BA283 from LHR to LAX on November 10th, departure at 12:30 PM.'</li><li>'We regret to inform you that your hotel reservation at The Plaza, New York, was unsuccessful due to unavailability. Please try booking another date.'</li><li>'Your car rental reservation with Hertz has been confirmed. Pickup location: JFK Airport, Date: October 20th, Time: 10:00 AM.'</li></ul> |
| 13 | <ul><li>'We have received a request to charge the attached invoice to the corporate credit card on file for Jane Doe. Please confirm the payment details at your earliest convenience.'</li><li>'Dear Travel Agency, we regret to inform you that the room booked for Mr. John Smith is unavailable due to overbooking. We have arranged an alternative accommodation at a nearby hotel. Please advise if this is acceptable.'</li><li>'Regarding the recent stay of Mr. Alan Harper, we noticed a discrepancy in the billing. The minibar charges were not included in the initial invoice. Kindly review the attached revised bill.'</li></ul> |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mann2107/BCMPIIRAB_MiniLM_ALL")
# Run inference
preds = model("Thank you for your email. Please go ahead and issue. Please invoice in KES")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 1 | 25.6577 | 136 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 24 |
| 1 | 24 |
| 2 | 24 |
| 3 | 24 |
| 4 | 24 |
| 5 | 24 |
| 6 | 24 |
| 7 | 24 |
| 8 | 24 |
| 9 | 24 |
| 10 | 24 |
| 11 | 24 |
| 12 | 24 |
| 13 | 24 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 2
- body_learning_rate: (0.0005201181161511404, 0.0005201181161511404)
- head_learning_rate: 0.00021200244124154418
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- max_length: 512
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: True
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:------:|:-------------:|:---------------:|
| 0.0476 | 1 | 0.2504 | - |
| 1.0 | 21 | - | 0.0691 |
| **2.0** | **42** | **-** | **0.0445** |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Datasets: 2.20.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |