File size: 2,466 Bytes
0a1d6fe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
config:
(): colpali_engine.trainer.colmodel_training.ColModelTrainingConfig
output_dir: !path ../../../models/colqwen2-7b
processor:
(): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
class_to_instanciate: !ext colpali_engine.models.ColQwen2Processor
pretrained_model_name_or_path: "./models/colqwen2-7b-base" # "./models/paligemma-3b-mix-448"
# num_image_tokens: 2048
# max_length: 50
model:
(): colpali_engine.utils.transformers_wrappers.AllPurposeWrapper
class_to_instanciate: !ext colpali_engine.models.ColQwen2
pretrained_model_name_or_path: "./models/colqwen2-7b-base"
torch_dtype: !ext torch.bfloat16
use_cache: false
attn_implementation: "flash_attention_2"
# device_map: "auto"
# quantization_config:
# (): transformers.BitsAndBytesConfig
# load_in_4bit: true
# bnb_4bit_quant_type: "nf4"
# bnb_4bit_compute_dtype: "bfloat16"
# bnb_4bit_use_double_quant: true
dataset_loading_func: !ext colpali_engine.utils.dataset_transformation.load_train_set
eval_dataset_loader: !import ../data/test_data.yaml
# max_length: 50
run_eval: true
loss_func:
(): colpali_engine.loss.late_interaction_losses.ColbertPairwiseCELoss
tr_args:
(): transformers.training_args.TrainingArguments
output_dir: null
overwrite_output_dir: true
num_train_epochs: 1
per_device_train_batch_size: 16
gradient_checkpointing: true
gradient_checkpointing_kwargs: { "use_reentrant": false }
# gradient_checkpointing: true
# 6 x 8 gpus = 48 batch size
# gradient_accumulation_steps: 4
per_device_eval_batch_size: 16
eval_strategy: "steps"
dataloader_num_workers: 8
# bf16: true
save_steps: 500
logging_steps: 10
eval_steps: 100
warmup_steps: 100
learning_rate: 5e-5
save_total_limit: 1
# resume_from_checkpoint: true
# optim: "paged_adamw_8bit"
# wandb logging
# wandb_project: "colqwen2"
# run_name: "colqwen2-ba32-nolora"
report_to: "wandb"
peft_config:
(): peft.LoraConfig
r: 32
lora_alpha: 32
lora_dropout: 0.1
init_lora_weights: "gaussian"
bias: "none"
task_type: "FEATURE_EXTRACTION"
target_modules: '(.*(model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
# target_modules: '(.*(language_model).*(down_proj|gate_proj|up_proj|k_proj|q_proj|v_proj|o_proj).*$|.*(custom_text_proj).*$)'
|