Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +95 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.92 +/- 0.17
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05bc0ccb0b70ab2a96a2281b92618acdf7afb0bd828c59cb6ae24b3d802698d5
|
3 |
+
size 107804
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.8.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c08e8e5d750>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c08e8e55b80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 250000,
|
23 |
+
"_total_timesteps": 250000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1690554596908039313,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"lr_schedule": {
|
31 |
+
":type:": "<class 'function'>",
|
32 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
33 |
+
},
|
34 |
+
"_last_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAti6kPh04ATwBZQ8/ti6kPh04ATwBZQ8/ti6kPh04ATwBZQ8/ti6kPh04ATwBZQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy0XOvpvRHb8uw9A9tqq+v4WrnD83tZu+Ax+JPQtsjT4HhaG/erhtv290Cz+ftyi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2LqQ+HTgBPAFlDz+uvEG8PBBmugBqezu2LqQ+HTgBPAFlDz+uvEG8PBBmugBqezu2LqQ+HTgBPAFlDz+uvEG8PBBmugBqezu2LqQ+HTgBPAFlDz+uvEG8PBBmugBqezuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
37 |
+
"achieved_goal": "[[0.32066888 0.00788691 0.56013495]\n [0.32066888 0.00788691 0.56013495]\n [0.32066888 0.00788691 0.56013495]\n [0.32066888 0.00788691 0.56013495]]",
|
38 |
+
"desired_goal": "[[-0.40287623 -0.6164796 0.10193478]\n [-1.4895847 1.2239844 -0.30411693]\n [ 0.06695368 0.27621493 -1.2618722 ]\n [-0.92859614 0.5447454 -0.65905184]]",
|
39 |
+
"observation": "[[ 0.32066888 0.00788691 0.56013495 -0.01182477 -0.00087762 0.00383627]\n [ 0.32066888 0.00788691 0.56013495 -0.01182477 -0.00087762 0.00383627]\n [ 0.32066888 0.00788691 0.56013495 -0.01182477 -0.00087762 0.00383627]\n [ 0.32066888 0.00788691 0.56013495 -0.01182477 -0.00087762 0.00383627]]"
|
40 |
+
},
|
41 |
+
"_last_episode_starts": {
|
42 |
+
":type:": "<class 'numpy.ndarray'>",
|
43 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
44 |
+
},
|
45 |
+
"_last_original_obs": {
|
46 |
+
":type:": "<class 'collections.OrderedDict'>",
|
47 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmgwPPSaq5j2LyYQ+UTznPNfoKD1wAAk8pzhIPYKYCL7IJJk+Z+fxPSTXEr7EL+U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
48 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
49 |
+
"desired_goal": "[[ 0.03492413 0.11262922 0.25935015]\n [ 0.028227 0.04123768 0.00836192]\n [ 0.04888215 -0.13339427 0.29910874]\n [ 0.11811715 -0.14339882 0.11190751]]",
|
50 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
51 |
+
},
|
52 |
+
"_episode_num": 0,
|
53 |
+
"use_sde": false,
|
54 |
+
"sde_sample_freq": -1,
|
55 |
+
"_current_progress_remaining": 0.0,
|
56 |
+
"_stats_window_size": 100,
|
57 |
+
"ep_info_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyQT8GkmC9r+UhpRSlIwBbJRLMowBdJRHQIgT1VzZHut1fZQoaAZoCWgPQwgb9ntinarzv5SGlFKUaBVLMmgWR0CIESsFt8/mdX2UKGgGaAloD0MITRQhdTv777+UhpRSlGgVSzJoFkdAiA6FO45LiHV9lChoBmgJaA9DCJTCvMeZpvG/lIaUUpRoFUsyaBZHQIgMrRv3rUt1fZQoaAZoCWgPQwhQb0bNV8nvv5SGlFKUaBVLMmgWR0CIGJnlnyuqdX2UKGgGaAloD0MIscItH0kJ8b+UhpRSlGgVSzJoFkdAiBXv0I1LrXV9lChoBmgJaA9DCEaZDTLJiPO/lIaUUpRoFUsyaBZHQIgTSmdiDul1fZQoaAZoCWgPQwgkmkARi1j0v5SGlFKUaBVLMmgWR0CIEXLdvbXZdX2UKGgGaAloD0MIPrSPFfw28b+UhpRSlGgVSzJoFkdAiBzyxzJZGXV9lChoBmgJaA9DCCkGSDSBIvS/lIaUUpRoFUsyaBZHQIgaR9srNGF1fZQoaAZoCWgPQwjEB3b8F8jxv5SGlFKUaBVLMmgWR0CIF6JsO5J9dX2UKGgGaAloD0MIxw4qcR2j8r+UhpRSlGgVSzJoFkdAiBXJ6po9LnV9lChoBmgJaA9DCNk+5C1Xf/G/lIaUUpRoFUsyaBZHQIgh1pGnXNF1fZQoaAZoCWgPQwhClZo90Mrwv5SGlFKUaBVLMmgWR0CIHytGus90dX2UKGgGaAloD0MIAwgfSrSk8b+UhpRSlGgVSzJoFkdAiByK9f1Hv3V9lChoBmgJaA9DCFjlQuVfS/G/lIaUUpRoFUsyaBZHQIgatJlJ6IF1fZQoaAZoCWgPQwhETIkketnyv5SGlFKUaBVLMmgWR0CIJjmJWNm2dX2UKGgGaAloD0MIoKUr2Ea88L+UhpRSlGgVSzJoFkdAiCOPkq+ajXV9lChoBmgJaA9DCGvwvioX6vC/lIaUUpRoFUsyaBZHQIgg6liz9jx1fZQoaAZoCWgPQwhrn47HDNTwv5SGlFKUaBVLMmgWR0CIHxKGL1mKdX2UKGgGaAloD0MIdO52vTSF8r+UhpRSlGgVSzJoFkdAiCqVII4VAXV9lChoBmgJaA9DCF2JQPUPovO/lIaUUpRoFUsyaBZHQIgn6x9oexR1fZQoaAZoCWgPQwjltn2P+uvvv5SGlFKUaBVLMmgWR0CIJUXQdCE6dX2UKGgGaAloD0MILliqC3jZ8b+UhpRSlGgVSzJoFkdAiCNtbLU1AXV9lChoBmgJaA9DCJ8FobyPI/G/lIaUUpRoFUsyaBZHQIgvDVc2R7t1fZQoaAZoCWgPQwiJ0Ag2rj/0v5SGlFKUaBVLMmgWR0CILGIi1RcedX2UKGgGaAloD0MIvEG0VrS59b+UhpRSlGgVSzJoFkdAiCm8dHUc43V9lChoBmgJaA9DCGk50ENt2/C/lIaUUpRoFUsyaBZHQIgn5BcAzYV1fZQoaAZoCWgPQwhdwMsMGyXzv5SGlFKUaBVLMmgWR0CIM2XPZ7HAdX2UKGgGaAloD0MIwM5Nm3Ha8b+UhpRSlGgVSzJoFkdAiDC7f51vEXV9lChoBmgJaA9DCJIjnYGRl+u/lIaUUpRoFUsyaBZHQIguFbgTAWV1fZQoaAZoCWgPQwhyUMJM27/zv5SGlFKUaBVLMmgWR0CILD1AZ88cdX2UKGgGaAloD0MInrMFhNYD8L+UhpRSlGgVSzJoFkdAiDfg1ejVQXV9lChoBmgJaA9DCHUeFf93BPG/lIaUUpRoFUsyaBZHQIg1NyLhrFh1fZQoaAZoCWgPQwjT9UTXhV/wv5SGlFKUaBVLMmgWR0CIMpHlwLmZdX2UKGgGaAloD0MIPEuQEVBh9b+UhpRSlGgVSzJoFkdAiDC5aV2RrHV9lChoBmgJaA9DCHJSmPc4U++/lIaUUpRoFUsyaBZHQIg8NCAtnPF1fZQoaAZoCWgPQwi1xqATQoftv5SGlFKUaBVLMmgWR0CIOYlP8AJcdX2UKGgGaAloD0MIDHVY4ZYP9L+UhpRSlGgVSzJoFkdAiDbkJrtVrHV9lChoBmgJaA9DCChDVUyln+2/lIaUUpRoFUsyaBZHQIg1DAWSEDh1fZQoaAZoCWgPQwgabOo8Kn7qv5SGlFKUaBVLMmgWR0CIQLbSqlxfdX2UKGgGaAloD0MItkjajT5m7r+UhpRSlGgVSzJoFkdAiD4MAeaKDXV9lChoBmgJaA9DCHqp2JjXke2/lIaUUpRoFUsyaBZHQIg7Zri2lVN1fZQoaAZoCWgPQwiQoWMHlfjwv5SGlFKUaBVLMmgWR0CIOY+UQkHEdX2UKGgGaAloD0MISgfr/xzm7L+UhpRSlGgVSzJoFkdAiEUNGd7OV3V9lChoBmgJaA9DCOvm4m97guu/lIaUUpRoFUsyaBZHQIhCYkE9t/F1fZQoaAZoCWgPQwgYQs77/3jxv5SGlFKUaBVLMmgWR0CIP70VafSQdX2UKGgGaAloD0MIvtu8cVKY9b+UhpRSlGgVSzJoFkdAiD3kona37XV9lChoBmgJaA9DCP/mxYmv9u+/lIaUUpRoFUsyaBZHQIhJhIH1OCZ1fZQoaAZoCWgPQwh8CoDxDFrzv5SGlFKUaBVLMmgWR0CIRtmukk8idX2UKGgGaAloD0MI83LYfcdw8L+UhpRSlGgVSzJoFkdAiEQ0cwQDm3V9lChoBmgJaA9DCApMp3UblPG/lIaUUpRoFUsyaBZHQIhCXJcPe551fZQoaAZoCWgPQwg+zF62nTbzv5SGlFKUaBVLMmgWR0CITgKziS7odX2UKGgGaAloD0MI2SWqtwY277+UhpRSlGgVSzJoFkdAiEtX5N47inV9lChoBmgJaA9DCNldoKTAAvG/lIaUUpRoFUsyaBZHQIhIs5Ke05V1fZQoaAZoCWgPQwg+JHzvbxDxv5SGlFKUaBVLMmgWR0CIRts3Q2MsdX2UKGgGaAloD0MIfjUHCOYo8L+UhpRSlGgVSzJoFkdAiFJ/29L6DXV9lChoBmgJaA9DCPPGSWHeo/C/lIaUUpRoFUsyaBZHQIhP1TYNAkd1fZQoaAZoCWgPQwg1XU90XTjyv5SGlFKUaBVLMmgWR0CITTCjUNKAdX2UKGgGaAloD0MIYY4ev7cp8r+UhpRSlGgVSzJoFkdAiEtZRCQcP3V9lChoBmgJaA9DCCl1yThGcvG/lIaUUpRoFUsyaBZHQIhXdzdUKiR1fZQoaAZoCWgPQwihhQSMLi/wv5SGlFKUaBVLMmgWR0CIVMzl90A+dX2UKGgGaAloD0MIVHHjFvMz8b+UhpRSlGgVSzJoFkdAiFInMUypJnV9lChoBmgJaA9DCPPHtDaN7ey/lIaUUpRoFUsyaBZHQIhQUO9WZJF1fZQoaAZoCWgPQwgEcR5OYLrsv5SGlFKUaBVLMmgWR0CIW9ZOBUaRdX2UKGgGaAloD0MIhnXj3ZGx67+UhpRSlGgVSzJoFkdAiFkrjo6jnHV9lChoBmgJaA9DCJOoF3yak/O/lIaUUpRoFUsyaBZHQIhWhftx+8Z1fZQoaAZoCWgPQwifH0YIj/bxv5SGlFKUaBVLMmgWR0CIVK1k1/DtdX2UKGgGaAloD0MI2jujrUqi77+UhpRSlGgVSzJoFkdAiGBKJuVHF3V9lChoBmgJaA9DCCNozCTqBe2/lIaUUpRoFUsyaBZHQIhdnxhDw6R1fZQoaAZoCWgPQwhcA1slWJz2v5SGlFKUaBVLMmgWR0CIWvnK4hECdX2UKGgGaAloD0MI2BGHbCBd8b+UhpRSlGgVSzJoFkdAiFkiDVYp2HV9lChoBmgJaA9DCJZDi2zn+/K/lIaUUpRoFUsyaBZHQIhmeHxjJ+51fZQoaAZoCWgPQwjt0obD0sDzv5SGlFKUaBVLMmgWR0CIY9BZ6lchdX2UKGgGaAloD0MIg2xZvi7D9L+UhpRSlGgVSzJoFkdAiGEtTtLL6nV9lChoBmgJaA9DCKDE506wf/O/lIaUUpRoFUsyaBZHQIhfV6Z6Uqx1fZQoaAZoCWgPQwj8xAH0+37uv5SGlFKUaBVLMmgWR0CIbUXN1QqJdX2UKGgGaAloD0MI7lutE5dj8L+UhpRSlGgVSzJoFkdAiGqdBSk0rXV9lChoBmgJaA9DCNALdy6MdPC/lIaUUpRoFUsyaBZHQIhn+mvW6LB1fZQoaAZoCWgPQwh3D9B9OfPwv5SGlFKUaBVLMmgWR0CIZiVi4J/odX2UKGgGaAloD0MIqRWm7zWE77+UhpRSlGgVSzJoFkdAiHQma6STyXV9lChoBmgJaA9DCHY1ecpqOu+/lIaUUpRoFUsyaBZHQIhxfoaDPGB1fZQoaAZoCWgPQwjopWJjXkfvv5SGlFKUaBVLMmgWR0CIbtvQ4S6EdX2UKGgGaAloD0MIUAEwnkFD7r+UhpRSlGgVSzJoFkdAiG0GJemelXV9lChoBmgJaA9DCPeUnBN7aOy/lIaUUpRoFUsyaBZHQIh7GHgxagV1fZQoaAZoCWgPQwjQmEnUC370v5SGlFKUaBVLMmgWR0CIeHM9r434dX2UKGgGaAloD0MIRuwTQDHy8b+UhpRSlGgVSzJoFkdAiHXSM98qnXV9lChoBmgJaA9DCIvgfyvZMfK/lIaUUpRoFUsyaBZHQIhz/QpnYg91fZQoaAZoCWgPQwiEnWLVIEzvv5SGlFKUaBVLMmgWR0CIglnjhky2dX2UKGgGaAloD0MIQDBHj99b8b+UhpRSlGgVSzJoFkdAiH+y7Xg9/3V9lChoBmgJaA9DCIYeMXpu4fK/lIaUUpRoFUsyaBZHQIh9EsnRb8p1fZQoaAZoCWgPQwirWz0nvW/0v5SGlFKUaBVLMmgWR0CIez2ovSMMdX2UKGgGaAloD0MIKQXdXtIY8L+UhpRSlGgVSzJoFkdAiIcKr7waznV9lChoBmgJaA9DCHWw/s9hPvW/lIaUUpRoFUsyaBZHQIiEYD7qIJt1fZQoaAZoCWgPQwhjJlEv+LTuv5SGlFKUaBVLMmgWR0CIgbu0kWykdX2UKGgGaAloD0MI2c2MfjTc8b+UhpRSlGgVSzJoFkdAiH/jurp7kXV9lChoBmgJaA9DCIOKql/pfO6/lIaUUpRoFUsyaBZHQIiLh+nZTQ51fZQoaAZoCWgPQwjDn+HNGjzsv5SGlFKUaBVLMmgWR0CIiNzMibDudX2UKGgGaAloD0MITp1Hxf8d7L+UhpRSlGgVSzJoFkdAiIY3OObRW3V9lChoBmgJaA9DCA5N2ekH9e2/lIaUUpRoFUsyaBZHQIiEXsqril11ZS4="
|
60 |
+
},
|
61 |
+
"ep_success_buffer": {
|
62 |
+
":type:": "<class 'collections.deque'>",
|
63 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
64 |
+
},
|
65 |
+
"_n_updates": 12500,
|
66 |
+
"n_steps": 5,
|
67 |
+
"gamma": 0.99,
|
68 |
+
"gae_lambda": 1.0,
|
69 |
+
"ent_coef": 0.0,
|
70 |
+
"vf_coef": 0.5,
|
71 |
+
"max_grad_norm": 0.5,
|
72 |
+
"normalize_advantage": false,
|
73 |
+
"observation_space": {
|
74 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
75 |
+
":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu",
|
76 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
77 |
+
"_shape": null,
|
78 |
+
"dtype": null,
|
79 |
+
"_np_random": null
|
80 |
+
},
|
81 |
+
"action_space": {
|
82 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
83 |
+
":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
84 |
+
"dtype": "float32",
|
85 |
+
"_shape": [
|
86 |
+
3
|
87 |
+
],
|
88 |
+
"low": "[-1. -1. -1.]",
|
89 |
+
"high": "[1. 1. 1.]",
|
90 |
+
"bounded_below": "[ True True True]",
|
91 |
+
"bounded_above": "[ True True True]",
|
92 |
+
"_np_random": null
|
93 |
+
},
|
94 |
+
"n_envs": 4
|
95 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b488ec7a1cf51759923161d941461d62aef801f243685f176fa1f188f9bc0be
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e596e9772586ec0178029f1931f4834892713f6b75f69b3111c6846e2ea9356
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
|
2 |
+
- Python: 3.10.6
|
3 |
+
- Stable-Baselines3: 1.8.0
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c08e8e5d750>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c08e8e55b80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 250000, "_total_timesteps": 250000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690554596908039313, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAti6kPh04ATwBZQ8/ti6kPh04ATwBZQ8/ti6kPh04ATwBZQ8/ti6kPh04ATwBZQ8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAy0XOvpvRHb8uw9A9tqq+v4WrnD83tZu+Ax+JPQtsjT4HhaG/erhtv290Cz+ftyi/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAC2LqQ+HTgBPAFlDz+uvEG8PBBmugBqezu2LqQ+HTgBPAFlDz+uvEG8PBBmugBqezu2LqQ+HTgBPAFlDz+uvEG8PBBmugBqezu2LqQ+HTgBPAFlDz+uvEG8PBBmugBqezuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.32066888 0.00788691 0.56013495]\n [0.32066888 0.00788691 0.56013495]\n [0.32066888 0.00788691 0.56013495]\n [0.32066888 0.00788691 0.56013495]]", "desired_goal": "[[-0.40287623 -0.6164796 0.10193478]\n [-1.4895847 1.2239844 -0.30411693]\n [ 0.06695368 0.27621493 -1.2618722 ]\n [-0.92859614 0.5447454 -0.65905184]]", "observation": "[[ 0.32066888 0.00788691 0.56013495 -0.01182477 -0.00087762 0.00383627]\n [ 0.32066888 0.00788691 0.56013495 -0.01182477 -0.00087762 0.00383627]\n [ 0.32066888 0.00788691 0.56013495 -0.01182477 -0.00087762 0.00383627]\n [ 0.32066888 0.00788691 0.56013495 -0.01182477 -0.00087762 0.00383627]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAmgwPPSaq5j2LyYQ+UTznPNfoKD1wAAk8pzhIPYKYCL7IJJk+Z+fxPSTXEr7EL+U9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03492413 0.11262922 0.25935015]\n [ 0.028227 0.04123768 0.00836192]\n [ 0.04888215 -0.13339427 0.29910874]\n [ 0.11811715 -0.14339882 0.11190751]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyQT8GkmC9r+UhpRSlIwBbJRLMowBdJRHQIgT1VzZHut1fZQoaAZoCWgPQwgb9ntinarzv5SGlFKUaBVLMmgWR0CIESsFt8/mdX2UKGgGaAloD0MITRQhdTv777+UhpRSlGgVSzJoFkdAiA6FO45LiHV9lChoBmgJaA9DCJTCvMeZpvG/lIaUUpRoFUsyaBZHQIgMrRv3rUt1fZQoaAZoCWgPQwhQb0bNV8nvv5SGlFKUaBVLMmgWR0CIGJnlnyuqdX2UKGgGaAloD0MIscItH0kJ8b+UhpRSlGgVSzJoFkdAiBXv0I1LrXV9lChoBmgJaA9DCEaZDTLJiPO/lIaUUpRoFUsyaBZHQIgTSmdiDul1fZQoaAZoCWgPQwgkmkARi1j0v5SGlFKUaBVLMmgWR0CIEXLdvbXZdX2UKGgGaAloD0MIPrSPFfw28b+UhpRSlGgVSzJoFkdAiBzyxzJZGXV9lChoBmgJaA9DCCkGSDSBIvS/lIaUUpRoFUsyaBZHQIgaR9srNGF1fZQoaAZoCWgPQwjEB3b8F8jxv5SGlFKUaBVLMmgWR0CIF6JsO5J9dX2UKGgGaAloD0MIxw4qcR2j8r+UhpRSlGgVSzJoFkdAiBXJ6po9LnV9lChoBmgJaA9DCNk+5C1Xf/G/lIaUUpRoFUsyaBZHQIgh1pGnXNF1fZQoaAZoCWgPQwhClZo90Mrwv5SGlFKUaBVLMmgWR0CIHytGus90dX2UKGgGaAloD0MIAwgfSrSk8b+UhpRSlGgVSzJoFkdAiByK9f1Hv3V9lChoBmgJaA9DCFjlQuVfS/G/lIaUUpRoFUsyaBZHQIgatJlJ6IF1fZQoaAZoCWgPQwhETIkketnyv5SGlFKUaBVLMmgWR0CIJjmJWNm2dX2UKGgGaAloD0MIoKUr2Ea88L+UhpRSlGgVSzJoFkdAiCOPkq+ajXV9lChoBmgJaA9DCGvwvioX6vC/lIaUUpRoFUsyaBZHQIgg6liz9jx1fZQoaAZoCWgPQwhrn47HDNTwv5SGlFKUaBVLMmgWR0CIHxKGL1mKdX2UKGgGaAloD0MIdO52vTSF8r+UhpRSlGgVSzJoFkdAiCqVII4VAXV9lChoBmgJaA9DCF2JQPUPovO/lIaUUpRoFUsyaBZHQIgn6x9oexR1fZQoaAZoCWgPQwjltn2P+uvvv5SGlFKUaBVLMmgWR0CIJUXQdCE6dX2UKGgGaAloD0MILliqC3jZ8b+UhpRSlGgVSzJoFkdAiCNtbLU1AXV9lChoBmgJaA9DCJ8FobyPI/G/lIaUUpRoFUsyaBZHQIgvDVc2R7t1fZQoaAZoCWgPQwiJ0Ag2rj/0v5SGlFKUaBVLMmgWR0CILGIi1RcedX2UKGgGaAloD0MIvEG0VrS59b+UhpRSlGgVSzJoFkdAiCm8dHUc43V9lChoBmgJaA9DCGk50ENt2/C/lIaUUpRoFUsyaBZHQIgn5BcAzYV1fZQoaAZoCWgPQwhdwMsMGyXzv5SGlFKUaBVLMmgWR0CIM2XPZ7HAdX2UKGgGaAloD0MIwM5Nm3Ha8b+UhpRSlGgVSzJoFkdAiDC7f51vEXV9lChoBmgJaA9DCJIjnYGRl+u/lIaUUpRoFUsyaBZHQIguFbgTAWV1fZQoaAZoCWgPQwhyUMJM27/zv5SGlFKUaBVLMmgWR0CILD1AZ88cdX2UKGgGaAloD0MInrMFhNYD8L+UhpRSlGgVSzJoFkdAiDfg1ejVQXV9lChoBmgJaA9DCHUeFf93BPG/lIaUUpRoFUsyaBZHQIg1NyLhrFh1fZQoaAZoCWgPQwjT9UTXhV/wv5SGlFKUaBVLMmgWR0CIMpHlwLmZdX2UKGgGaAloD0MIPEuQEVBh9b+UhpRSlGgVSzJoFkdAiDC5aV2RrHV9lChoBmgJaA9DCHJSmPc4U++/lIaUUpRoFUsyaBZHQIg8NCAtnPF1fZQoaAZoCWgPQwi1xqATQoftv5SGlFKUaBVLMmgWR0CIOYlP8AJcdX2UKGgGaAloD0MIDHVY4ZYP9L+UhpRSlGgVSzJoFkdAiDbkJrtVrHV9lChoBmgJaA9DCChDVUyln+2/lIaUUpRoFUsyaBZHQIg1DAWSEDh1fZQoaAZoCWgPQwgabOo8Kn7qv5SGlFKUaBVLMmgWR0CIQLbSqlxfdX2UKGgGaAloD0MItkjajT5m7r+UhpRSlGgVSzJoFkdAiD4MAeaKDXV9lChoBmgJaA9DCHqp2JjXke2/lIaUUpRoFUsyaBZHQIg7Zri2lVN1fZQoaAZoCWgPQwiQoWMHlfjwv5SGlFKUaBVLMmgWR0CIOY+UQkHEdX2UKGgGaAloD0MISgfr/xzm7L+UhpRSlGgVSzJoFkdAiEUNGd7OV3V9lChoBmgJaA9DCOvm4m97guu/lIaUUpRoFUsyaBZHQIhCYkE9t/F1fZQoaAZoCWgPQwgYQs77/3jxv5SGlFKUaBVLMmgWR0CIP70VafSQdX2UKGgGaAloD0MIvtu8cVKY9b+UhpRSlGgVSzJoFkdAiD3kona37XV9lChoBmgJaA9DCP/mxYmv9u+/lIaUUpRoFUsyaBZHQIhJhIH1OCZ1fZQoaAZoCWgPQwh8CoDxDFrzv5SGlFKUaBVLMmgWR0CIRtmukk8idX2UKGgGaAloD0MI83LYfcdw8L+UhpRSlGgVSzJoFkdAiEQ0cwQDm3V9lChoBmgJaA9DCApMp3UblPG/lIaUUpRoFUsyaBZHQIhCXJcPe551fZQoaAZoCWgPQwg+zF62nTbzv5SGlFKUaBVLMmgWR0CITgKziS7odX2UKGgGaAloD0MI2SWqtwY277+UhpRSlGgVSzJoFkdAiEtX5N47inV9lChoBmgJaA9DCNldoKTAAvG/lIaUUpRoFUsyaBZHQIhIs5Ke05V1fZQoaAZoCWgPQwg+JHzvbxDxv5SGlFKUaBVLMmgWR0CIRts3Q2MsdX2UKGgGaAloD0MIfjUHCOYo8L+UhpRSlGgVSzJoFkdAiFJ/29L6DXV9lChoBmgJaA9DCPPGSWHeo/C/lIaUUpRoFUsyaBZHQIhP1TYNAkd1fZQoaAZoCWgPQwg1XU90XTjyv5SGlFKUaBVLMmgWR0CITTCjUNKAdX2UKGgGaAloD0MIYY4ev7cp8r+UhpRSlGgVSzJoFkdAiEtZRCQcP3V9lChoBmgJaA9DCCl1yThGcvG/lIaUUpRoFUsyaBZHQIhXdzdUKiR1fZQoaAZoCWgPQwihhQSMLi/wv5SGlFKUaBVLMmgWR0CIVMzl90A+dX2UKGgGaAloD0MIVHHjFvMz8b+UhpRSlGgVSzJoFkdAiFInMUypJnV9lChoBmgJaA9DCPPHtDaN7ey/lIaUUpRoFUsyaBZHQIhQUO9WZJF1fZQoaAZoCWgPQwgEcR5OYLrsv5SGlFKUaBVLMmgWR0CIW9ZOBUaRdX2UKGgGaAloD0MIhnXj3ZGx67+UhpRSlGgVSzJoFkdAiFkrjo6jnHV9lChoBmgJaA9DCJOoF3yak/O/lIaUUpRoFUsyaBZHQIhWhftx+8Z1fZQoaAZoCWgPQwifH0YIj/bxv5SGlFKUaBVLMmgWR0CIVK1k1/DtdX2UKGgGaAloD0MI2jujrUqi77+UhpRSlGgVSzJoFkdAiGBKJuVHF3V9lChoBmgJaA9DCCNozCTqBe2/lIaUUpRoFUsyaBZHQIhdnxhDw6R1fZQoaAZoCWgPQwhcA1slWJz2v5SGlFKUaBVLMmgWR0CIWvnK4hECdX2UKGgGaAloD0MI2BGHbCBd8b+UhpRSlGgVSzJoFkdAiFkiDVYp2HV9lChoBmgJaA9DCJZDi2zn+/K/lIaUUpRoFUsyaBZHQIhmeHxjJ+51fZQoaAZoCWgPQwjt0obD0sDzv5SGlFKUaBVLMmgWR0CIY9BZ6lchdX2UKGgGaAloD0MIg2xZvi7D9L+UhpRSlGgVSzJoFkdAiGEtTtLL6nV9lChoBmgJaA9DCKDE506wf/O/lIaUUpRoFUsyaBZHQIhfV6Z6Uqx1fZQoaAZoCWgPQwj8xAH0+37uv5SGlFKUaBVLMmgWR0CIbUXN1QqJdX2UKGgGaAloD0MI7lutE5dj8L+UhpRSlGgVSzJoFkdAiGqdBSk0rXV9lChoBmgJaA9DCNALdy6MdPC/lIaUUpRoFUsyaBZHQIhn+mvW6LB1fZQoaAZoCWgPQwh3D9B9OfPwv5SGlFKUaBVLMmgWR0CIZiVi4J/odX2UKGgGaAloD0MIqRWm7zWE77+UhpRSlGgVSzJoFkdAiHQma6STyXV9lChoBmgJaA9DCHY1ecpqOu+/lIaUUpRoFUsyaBZHQIhxfoaDPGB1fZQoaAZoCWgPQwjopWJjXkfvv5SGlFKUaBVLMmgWR0CIbtvQ4S6EdX2UKGgGaAloD0MIUAEwnkFD7r+UhpRSlGgVSzJoFkdAiG0GJemelXV9lChoBmgJaA9DCPeUnBN7aOy/lIaUUpRoFUsyaBZHQIh7GHgxagV1fZQoaAZoCWgPQwjQmEnUC370v5SGlFKUaBVLMmgWR0CIeHM9r434dX2UKGgGaAloD0MIRuwTQDHy8b+UhpRSlGgVSzJoFkdAiHXSM98qnXV9lChoBmgJaA9DCIvgfyvZMfK/lIaUUpRoFUsyaBZHQIhz/QpnYg91fZQoaAZoCWgPQwiEnWLVIEzvv5SGlFKUaBVLMmgWR0CIglnjhky2dX2UKGgGaAloD0MIQDBHj99b8b+UhpRSlGgVSzJoFkdAiH+y7Xg9/3V9lChoBmgJaA9DCIYeMXpu4fK/lIaUUpRoFUsyaBZHQIh9EsnRb8p1fZQoaAZoCWgPQwirWz0nvW/0v5SGlFKUaBVLMmgWR0CIez2ovSMMdX2UKGgGaAloD0MIKQXdXtIY8L+UhpRSlGgVSzJoFkdAiIcKr7waznV9lChoBmgJaA9DCHWw/s9hPvW/lIaUUpRoFUsyaBZHQIiEYD7qIJt1fZQoaAZoCWgPQwhjJlEv+LTuv5SGlFKUaBVLMmgWR0CIgbu0kWykdX2UKGgGaAloD0MI2c2MfjTc8b+UhpRSlGgVSzJoFkdAiH/jurp7kXV9lChoBmgJaA9DCIOKql/pfO6/lIaUUpRoFUsyaBZHQIiLh+nZTQ51fZQoaAZoCWgPQwjDn+HNGjzsv5SGlFKUaBVLMmgWR0CIiNzMibDudX2UKGgGaAloD0MITp1Hxf8d7L+UhpRSlGgVSzJoFkdAiIY3OObRW3V9lChoBmgJaA9DCA5N2ekH9e2/lIaUUpRoFUsyaBZHQIiEXsqril11ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVWAMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZSMAUOUdJRSlIwEaGlnaJRoHiiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBZLA4WUaCF0lFKUjA1ib3VuZGVkX2JlbG93lGgeKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIXSUUpSMDWJvdW5kZWRfYWJvdmWUaB4olgMAAAAAAAAAAQEBlGgtSwOFlGghdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBZoGUsDhZRoG2geKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoIXSUUpRoJGgeKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFksDhZRoIXSUUpRoKWgeKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoM2geKJYDAAAAAAAAAAEBAZRoLUsDhZRoIXSUUpRoOE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBlLBoWUaBtoHiiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCF0lFKUaCRoHiiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCF0lFKUaCloHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDNoHiiWBgAAAAAAAAABAQEBAQGUaC1LBoWUaCF0lFKUaDhOdWJ1aBlOaBBOaDhOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVcwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMBGhpZ2iUaBMolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgLSwOFlGgWdJRSlIwNYm91bmRlZF9iZWxvd5RoEyiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoIksDhZRoFnSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "False", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (707 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.9226776268449612, "std_reward": 0.1712053567496754, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T14:44:36.454625"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ab0469751af51c31d37bcfb441d9eb269ec255b7bce43bd83db98a18f29871d
|
3 |
+
size 2387
|