File size: 2,699 Bytes
5fb92fc
 
 
 
 
 
6a54ff2
5fb92fc
 
 
75f3ebc
 
 
5fb92fc
 
75f3ebc
5fb92fc
75f3ebc
5fb92fc
1f1888a
5fb92fc
 
 
 
fed6a11
9d8b67d
fe0f063
5fb92fc
 
24fd438
 
 
 
9f0e6b7
24fd438
 
 
 
fe0f063
 
5fb92fc
 
fe0f063
 
 
5fb92fc
 
 
 
 
 
 
 
fe0f063
 
 
 
 
 
 
 
 
 
 
5fb92fc
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
license: llama3.1
datasets:
- marcelbinz/Psych-101
tags:
- Psychology
- unsloth
---





### Model Summary:

<img src="https://marcelbinz.github.io/imgs/centaur.png" width="200"/>

Llama-3.1-Centaur-70B is a foundation model of cognition model that can predict and simulate human behavior in any behavioral experiment expressed in natural language.

- **Paper:** [Centaur: a foundation model of human cognition](https://marcelbinz.github.io/imgs/Centaur__preprint_.pdf)
- **Point of Contact:** [Marcel Binz](mailto:[email protected])
         
### Usage:

Note that Centaur is trained on a data set in which human choices are encapsulated by "<<" and ">>" tokens. For optimal performance, it is recommended to adjust prompts accordingly.

The recommended usage is by loading the low-rank adapter using unsloth:

```python
from unsloth import FastLanguageModel

model_name = "marcelbinz/Llama-3.1-Centaur-70B-adapter"
model, tokenizer = FastLanguageModel.from_pretrained(
  model_name = model_name,
  max_seq_length = 32768,
  dtype = None,
  load_in_4bit = True,
)

FastLanguageModel.for_inference(model)
```

This requires 80 GB GPU memory.

You can alternatively also directly use the less-tested [merged model](https://huggingface.co/marcelbinz/Llama-3.1-Centaur-70B).


### Licensing Information

[Llama 3.1 Community License Agreement](https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct/blob/main/LICENSE)

### Citation Information

```
@misc{binz2024centaurfoundationmodelhuman,
      title={Centaur: a foundation model of human cognition}, 
      author={Marcel Binz and Elif Akata and Matthias Bethge and Franziska Brändle and Fred Callaway and Julian Coda-Forno and Peter Dayan and Can Demircan and Maria K. Eckstein and Noémi Éltető and Thomas L. Griffiths and Susanne Haridi and Akshay K. Jagadish and Li Ji-An and Alexander Kipnis and Sreejan Kumar and Tobias Ludwig and Marvin Mathony and Marcelo Mattar and Alireza Modirshanechi and Surabhi S. Nath and Joshua C. Peterson and Milena Rmus and Evan M. Russek and Tankred Saanum and Natalia Scharfenberg and Johannes A. Schubert and Luca M. Schulze Buschoff and Nishad Singhi and Xin Sui and Mirko Thalmann and Fabian Theis and Vuong Truong and Vishaal Udandarao and Konstantinos Voudouris and Robert Wilson and Kristin Witte and Shuchen Wu and Dirk Wulff and Huadong Xiong and Eric Schulz},
      year={2024},
      eprint={2410.20268},
      archivePrefix={arXiv},
      primaryClass={cs.LG},
      url={https://arxiv.org/abs/2410.20268}, 
}
```

[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)