--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - f1 model-index: - name: deberta-v3-base-rotten-tomatoes-hp2 results: [] --- # deberta-v3-base-rotten-tomatoes-hp2 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the [rotten_tomatoes](https://huggingface.co/datasets/rotten_tomatoes) dataset. It achieves the following results on the evaluation set: - Loss: 0.2619 - F1: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7.5e-06 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | No log | 1.0 | 267 | 0.2430 | 0.9146 | | 0.3091 | 2.0 | 534 | 0.2499 | 0.9156 | | 0.3091 | 3.0 | 801 | 0.2829 | 0.9174 | | 0.1496 | 4.0 | 1068 | 0.2742 | 0.9137 | | 0.1496 | 5.0 | 1335 | 0.3845 | 0.9099 | | 0.0864 | 6.0 | 1602 | 0.4254 | 0.9024 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.2