File size: 1,980 Bytes
03dc092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265316
03dc092
 
 
 
1265316
 
03dc092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1265316
 
 
 
 
03dc092
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---

license: apache-2.0
base_model: distilbert/distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: classificacao_texto_hugging_face_v1
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mvgdr/retrieval_augmented_generation/runs/akkgxnmm)
# classificacao_texto_hugging_face_v1

This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3487
- Accuracy: 0.9329

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05

- train_batch_size: 16

- eval_batch_size: 16

- seed: 42

- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08

- lr_scheduler_type: linear

- num_epochs: 5

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.2281        | 1.0   | 1563 | 0.2264          | 0.9129   |
| 0.1569        | 2.0   | 3126 | 0.2086          | 0.9316   |
| 0.0937        | 3.0   | 4689 | 0.2765          | 0.9332   |
| 0.0539        | 4.0   | 6252 | 0.3649          | 0.9253   |
| 0.0333        | 5.0   | 7815 | 0.3487          | 0.9329   |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.4.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1