--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy model-index: - name: classificacao_texto_hugging_face_v1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mvgdr/retrieval_augmented_generation/runs/akkgxnmm) # classificacao_texto_hugging_face_v1 This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3487 - Accuracy: 0.9329 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2281 | 1.0 | 1563 | 0.2264 | 0.9129 | | 0.1569 | 2.0 | 3126 | 0.2086 | 0.9316 | | 0.0937 | 3.0 | 4689 | 0.2765 | 0.9332 | | 0.0539 | 4.0 | 6252 | 0.3649 | 0.9253 | | 0.0333 | 5.0 | 7815 | 0.3487 | 0.9329 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.4.1+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1