marci0929's picture
Walker2d_first_try
5aa5411
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efc3af89550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efc3af895e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efc3af89670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efc3af89700>", "_build": "<function ActorCriticPolicy._build at 0x7efc3af89790>", "forward": "<function ActorCriticPolicy.forward at 0x7efc3af89820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efc3af898b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efc3af89940>", "_predict": "<function ActorCriticPolicy._predict at 0x7efc3af899d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efc3af89a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efc3af89af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efc3af89b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7efc3af88c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVKwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLFoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWWAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxaFlIwBQ5R0lFKUjARoaWdolGgSKJZYAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLFoWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLFoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYWAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLFoWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [22], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWViwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLBoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaApLBoWUjAFDlHSUUpSMBGhpZ2iUaBIolhgAAAAAAAAAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/lGgKSwaFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWBgAAAAAAAAABAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLBoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYGAAAAAAAAAAEBAQEBAZRoIUsGhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [6], "low": "[-1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True]", "bounded_above": "[ True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680545591806780461, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAMmNXL8AAAAAFiYZN7vWsz0AAAAA/jCoPgAAAADFWei/sdmPvyhRgb69AT0+2HY2P/G1yb8CrQ49Mvrmv/5BOj6CI9s9P4EVPi6IrD4YWUS9d6qsPu6+dz7ACgK/AAAAABYmGTf4SBC+AAAAAFCL0T4AAAAAaRvXvx6P+b5AfZm9QdlfvgHqHz8f0Ly/OcyTvip4vb9rEZA+fAnbPT9aGz4OwJA91uC0vneqrD7uvnc+YGthvwAAAAAWJhk30dwrPgAAAAB7ukY/AAAAANDexL/SLSG9bT+MP7P2mTw1bAe+ixrKv0LNG79DB9m/bdpwPzDB5D3dl+89DRb9PmEpBr53qqw+7r53Pr0K5D4AAAAAFiYZN6ptIL8AAAAAIMx4vwAAAADSyWW/GoYjwD0LX8A5w6M8fhTHPyLYZrvp5pjAQkQsv9BtZ8AY59o9pjQcPrZWS78gvQS+48Y9wLtDhMCUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1QEAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAQAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAakd9PwAAAABKtIU/AAAAAApjjL0AAAAA7yp3PwAAAADNEXo/AAAAAFRpsD0AAAAAAAAAAAAAAAAAAAAAAAAAAAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgOCAiD8AAAAAgt2CPwAAAAAKryc9AAAAAH7Rbz8AAAAATWWCPwAAAABJWt08AAAAAAAAAAAAAAAAAAAAAAAAAAAAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBpUXU/AAAAAEYlcj8AAAAAZGXfPQAAAABMu3I/AAAAAIhucT8AAAAADgTZvQAAAAAAAAAAAAAAAAAAAAAAAAAAAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAySF2PwAAAAAw4IQ/AAAAAFqivj0AAAAAPh14PwAAAADkzIA/AAAAANBnuT0AAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLFoaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVFwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQH0r1gtvn8uMAWyUTYgCjAF0lEdAamS6d1+y7nV9lChoBkdAUU3jm0VrRGgHS3poCEdAamvIYm9g4XV9lChoBkdAUv8ppeu3dGgHS71oCEdAamvxPO6d2HV9lChoBkdAU28JdB0IT2gHS4xoCEdAaoUh4+r2g3V9lChoBkdAVVCZrpJPImgHS5NoCEdAaoaKuSwGGHV9lChoBkdAUnoM5OrQxGgHS1JoCEdAapVyZrpJPXV9lChoBkdAafqv7m+0xGgHTUUBaAhHQGqfrR8c+7l1fZQoaAZHQHj+jjm0VrRoB00fAmgIR0BqoEep4rz5dX2UKGgGR0BZOFB2OhkBaAdLsWgIR0BqpTFXJYDDdX2UKGgGR0BZrQdXDFZQaAdLc2gIR0Bqqju2JBPbdX2UKGgGR0BFlhfBvaUSaAdLXmgIR0Bqsn5N47iidX2UKGgGR0BUkaq814xDaAdLW2gIR0BqwM/bCaZydX2UKGgGR0BcfaO1fE4vaAdLn2gIR0Bqw9NahYeUdX2UKGgGR0BfpKdQO4G2aAdLj2gIR0BqxpPZZjhDdX2UKGgGR0BTesR15jYqaAdLVWgIR0Bqx9yDIzWPdX2UKGgGR0Bh7utZFG5MaAdLrGgIR0Bq82yon8badX2UKGgGR0Blj72alUIcaAdL32gIR0BrAGOGTLW7dX2UKGgGR0BpaI4ffXPJaAdNCQFoCEdAawUpxWDHwXV9lChoBkdARKZm03Ov+2gHS01oCEdAawklenhsInV9lChoBkdAVQI4WDYh+2gHS15oCEdAayBVhCtzS3V9lChoBkdAeE2M+/xlQWgHTQYCaAhHQGtQW5xzaK11fZQoaAZHQIZD5HCoCMhoB03oA2gIR0Br0gX0oSctdX2UKGgGR0CGO/VQQ+UyaAdN6ANoCEdAa9d24d6syXV9lChoBkdAhmvg5q/M4mgHTegDaAhHQGvlsfq5byJ1fZQoaAZHQIXPSZpi7TVoB03oA2gIR0BsBAnYxtYTdX2UKGgGR0CC7fMhX8wYaAdNUwNoCEdAbH7Fn7Hhj3V9lChoBkdAhnpImPYFq2gHTegDaAhHQGyFfICEHt51fZQoaAZHQEd254GD+R5oB0s2aAhHQGyIi2lVLjB1fZQoaAZHQIbCDI7vG6xoB03oA2gIR0BsixJsfq5cdX2UKGgGR0BX5u76Hj6vaAdLsWgIR0BsthWLgn+idX2UKGgGR0CGJbho/RmcaAdN6ANoCEdAbMi88La24XV9lChoBkdAhV0/Z26kI2gHTegDaAhHQG1vZVOsT391fZQoaAZHQIXNy2phnapoB03oA2gIR0Btcm+0w8GLdX2UKGgGR0AwEezUqhDgaAdLFmgIR0BtdnjABT4tdX2UKGgGR0CGDStDlYEGaAdN6ANoCEdAbZTaWX1J2HV9lChoBkdALFdm6GxlhGgHSz5oCEdAbZ/S75Ec83V9lChoBkdAhQelLFn7HmgHTegDaAhHQG2iDAaef7J1fZQoaAZHQIaxwjhUBGRoB03oA2gIR0BuIxdMTN+tdX2UKGgGR0CGd0WszVMFaAdN6ANoCEdAbinyyUs4DXV9lChoBkdAht93kPtlZ2gHTegDaAhHQG5Ts4T9KmN1fZQoaAZHQGYjUJOWSlpoB0vqaAhHQG5UOsDGLk11fZQoaAZHQIbMOB19v0hoB03oA2gIR0BuVgT4+KTCdX2UKGgGR0CB0HGOuJUHaAdNEgNoCEdAbsv1K5Cng3V9lChoBkdAhnisenyd4GgHTegDaAhHQG9PSSV4X411fZQoaAZHQIYkm9OARTVoB03oA2gIR0BvT88q4H5adX2UKGgGR0CGdMod+5OKaAdN6ANoCEdAb1F+GXXyy3V9lChoBkdAhT+kRSP2f2gHTegDaAhHQG+p9QO4G2V1fZQoaAZHQIW+TXBguyxoB03oA2gIR0BwAEsJ6Y3OdX2UKGgGR0CG6v3gUDdQaAdN6ANoCEdAcACIDHOryXV9lChoBkdAhb8r74zrNWgHTegDaAhHQHABW8/Uvwp1fZQoaAZHQElWGt6ol2NoB0uIaAhHQHANGvjfek51fZQoaAZHQF4DZgG8mKJoB0uqaAhHQHAPHZwn6VN1fZQoaAZHQFil+mWMS9NoB0uCaAhHQHAa1bVz6rN1fZQoaAZHQEhi8dxQzk9oB0uBaAhHQHAnebd8ArB1fZQoaAZHQIXXcyad+XtoB03oA2gIR0BwRNKcurZKdX2UKGgGR0CAinZ6D5CXaAdN3gJoCEdAcIUsZ5zHTHV9lChoBkdAcULTaTOgQGgHTXABaAhHQHCFTVc2R7t1fZQoaAZHQEszechC+lFoB0staAhHQHCJkvsZ5zJ1fZQoaAZHQIY1KnBLwnZoB03oA2gIR0Bwj+21D0DmdX2UKGgGR0A+0690zTF3aAdLImgIR0BwktDKHO8kdX2UKGgGR0BQk1pXZGrkaAdLj2gIR0Bwlg4VARkFdX2UKGgGR0CGTzZmqYJFaAdN6ANoCEdAcLVbMHKOk3V9lChoBkdAc43Gn4wh4mgHTZkBaAhHQHC2kPMB6rx1fZQoaAZHQFWw0G/vfCRoB0ulaAhHQHDFHlr/Khd1fZQoaAZHQErCaPS2H+JoB0tEaAhHQHDK64QSSNh1fZQoaAZHQFVwp5/smfJoB0tdaAhHQHDS5vP1L8J1fZQoaAZHQIWYoeRxLkFoB03oA2gIR0Bw5zalDWsjdX2UKGgGR0BUPZMQEpy7aAdLaGgIR0Bw++tknTiLdX2UKGgGR0CFm9pA2Q4kaAdN6ANoCEdAcQf78vVVgnV9lChoBkdAVXBvwVj7RGgHS2VoCEdAcQmt3fQ8fXV9lChoBkdAUcF+3H7xeGgHS0toCEdAcRBQtz0Yj3V9lChoBkdAhj/6+WWyDGgHTegDaAhHQHEp20qpcX51fZQoaAZHQIb068FpwjtoB03oA2gIR0BxVu3G4qgAdX2UKGgGR0CHWPZzxPO6aAdN6ANoCEdAcYZFgUlAvHV9lChoBkdAhzNHCGetjmgHTegDaAhHQHGR7+1jRUp1fZQoaAZHQIbEjl/6O5toB03oA2gIR0BxtH6TGHYZdX2UKGgGR0CHMbQAuIykaAdN6ANoCEdAcdNSZBsyi3V9lChoBkdAh0P/oaDPGGgHTegDaAhHQHHv2q1gH/t1fZQoaAZHQFOgFqBVdX1oB0tQaAhHQHH3KagElmh1fZQoaAZHQIc7cByS3b5oB03oA2gIR0Bx+Gwnpjc3dX2UKGgGR0A98xcmjTKDaAdLT2gIR0ByAEChew9rdX2UKGgGR0BWL6O1fE4vaAdLh2gIR0ByBC6Gxlg/dX2UKGgGR0BTnCntOVPfaAdLZmgIR0ByDWmce8wpdX2UKGgGR0CGl1Gpda+waAdN6ANoCEdAchFQeV9nb3V9lChoBkdAh25lDWsijmgHTegDaAhHQHI4VVcUuct1fZQoaAZHQElyZ3LV4HJoB0t3aAhHQHJIP1xsEaF1fZQoaAZHQEuwurZJ04loB0s+aAhHQHJRARsdkrh1fZQoaAZHQHqTqzeGfwtoB01TAmgIR0ByVXk/8l5XdX2UKGgGR0BJNqYZ2pyZaAdLKmgIR0ByVqyLQ5WBdX2UKGgGR0BQT+p84PwvaAdLemgIR0ByZ6VObiIddX2UKGgGR0CG65VHWjGlaAdN6ANoCEdAcnaVMEidKHV9lChoBkdAYhSBQN0/4mgHS7FoCEdAcnrxaxHG0nV9lChoBkdAhzHjJlrdnGgHTegDaAhHQHKHuEM9bHJ1fZQoaAZHQId9h+4LCvZoB03oA2gIR0ByucxXXAdodX2UKGgGR0CHHW20AtFsaAdN6ANoCEdActH8uSOinHV9lChoBkdAhr7/yGzrvGgHTegDaAhHQHLWT5XU6Pt1fZQoaAZHQIabQjGDL8toB03oA2gIR0By46XQdCE6dX2UKGgGR0Bal5FocrAhaAdLkGgIR0By8J/PPcBVdX2UKGgGR0CIXfFI/Z/TaAdN6ANoCEdAcxaUj9n9N3V9lChoBkdAUdyNuLrHEWgHS2VoCEdAcyMzxwyZa3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3125, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}