marcogfedozzi
commited on
Commit
•
9da75eb
1
Parent(s):
8160107
Commit sac-100k-v2 model
Browse files- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3.zip +3 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3/_stable_baselines3_version +1 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3/actor.optimizer.pth +3 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3/critic.optimizer.pth +3 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3/data +126 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3/ent_coef_optimizer.pth +3 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3/policy.pth +3 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3/pytorch_variables.pth +3 -0
- sac-100k-v2-PandaPickAndPlaceDense-v3/system_info.txt +8 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaPickAndPlaceDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: sac
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaPickAndPlaceDense-v3
|
16 |
+
type: PandaPickAndPlaceDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -10.52 +/- 3.95
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **sac** Agent playing **PandaPickAndPlaceDense-v3**
|
25 |
+
This is a trained model of a **sac** agent playing **PandaPickAndPlaceDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.sac.policies", "__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7fadee7c1480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fadee7c9240>"}, "verbose": 0, "policy_kwargs": {"use_sde": false}, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704555603662125085, "learning_rate": 0.0005, "tensorboard_log": "./logs/sac-100k-v2/", "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVOwcAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAPJKGPxZkHr7xwOc9ZPAYPyywO76xyOc9coMQP5w4iD9Xyuc9knaKv0WMQT/Wyec97IB0vw4ChL9Xyuc9XuGcvwyn1T3Wyec9xKTJPag45729yOc9upnpvjoxd79Xyuc9j0AfP21hiD9Xyuc9rbd5P7JvgL/dxuc9gCMev/5YND+Gv+c9nPc/vzppUj+xyOc9Ry5EP9VPDz/Wyec92m7AvZsvyb2xyOc94XBHPk/8zz0ky+c9xZ4Cv7NGSD+xyOc9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAWvqUvjUbxL/NaYu/h6nJv285g75+clA/WuspP6YPFb/cv4a/rj08v0EOoz8NtU0/dFeDvxLoCr92dm49pVTpPsV9/D6A1zy/5I8SP+U8WD+3YhE+L5GSvmbuk7+Fyhc/prC5Pk3TYz6Dx64/pw5xP9ahZD/NaYu/N0Kzv82Ejz/8+dw+EPciP3yA9jzp2M8+EnlJPxPfLT/u9S6+rbPvvhf4lj746Yo/3jCZvxP/Cz+Ca+g+r19xP4Rqsr83rei8lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAQAAAAAAABOEAw/nM0TPkE77j8/nDg+sKoPPhFXjTxoX5g/PJKGPxZkHr7xwOc9t3iOO9j/hrxj4cO7ZpQ5PQFHYLvIRm09cYtpu/mu3bwUf5g6e4SnPwP0mj+zK/I+Aq6JPjosHz+3TOc/raZdv2TwGD8ssDu+scjnPUa6iTunqIi8Wx+zuyrsOT3wjTi7NodsPa12gruR5dG8QLKBOqby+7+jQvU/YII5vxOMyr/Q38M+n804vY9DY79ygxA/nDiIP1fK5z2/uIo7UmiKvFh91bsv8jc9cK87u79PbT1qt7K7t/zivGxdDTr/pL8/AJHGvjuXO7+cMWw90JKNv5o0tT1bh3A/knaKv0WMQT/Wyec9PpuOO5cQibzngrG7uwU4PSPHLLurvms9TH/Ou5C+3LwJ4Ug6XgO1PxC69L7Ixj2/CSzivb3br7+B7gE+1zJ0P+yAdL8OAoS/V8rnPb64ijtUaIq8aJPeuzXyNz2Nrju7wE9tPYG6srtS/OK8+VENOjz/oz06kWy/4y0Tv+6CKz/2SBA/ec59P5Unlz9e4Zy/DKfVPdbJ5z2REos7zDmKvOum3bvjzTo9gsNYu6u+az3kZiS71c7AvPx4IzpvLzW/BNVCwGN8Jr9OGw4/QAIBv1d0oD+vAXM/xKTJPag45729yOc993CJO93EiLwy9Sa+Zug5PbyyOLs1h2w9sHaCu4/l0bxO2YU63nZuvVHwTEDjGwm/C4KOv/Ta1D/GlLI/Q8CcP7qZ6b46MXe/V8rnPb+4ijtTaIq8lrbZuzLyNz0Hrzu7v09tPdm4sruI/OK8GVgNOhILjz8z4v0/bQF9vhl6qL0AnIW/g4n7v5VYhL6PQB8/bWGIP1fK5z3bKI87FfOIvH/TuruG3Dk9pfhZu79PbT0Pstm6Vg3HvHj7Xjp8qsQ9JrKPv4heML/GLtk+GtWev2RZKT/7Dpw/rbd5P7JvgL/dxuc9+mSPO552iLzmbr27JKc6PS7FXLuudWw9YM5/u9Cs0bwfi5g62P+JPxQhBEB+uAi/CZKTvrUgbT/HOWM+BZSPv4AjHr/+WDQ/hr/nPU2zlTs43Yi8RIHTuztJOD2xEkm7NodsPdF2gruY5dG8r78lOuOOmT/DZ929KQ8fPp7XKD+8cvK/4XsHQIGccT+c9z+/OmlSP7HI5z3guok7d6iIvDvfjbsd7Dk9sI84uzaHbD2tdoK7keXRvE2ngTpugoo/QbyFv48MDL8ALgE+IeaRvY25Fj6aepw/Ry5EP9VPDz/Wyec9M5uOO5gQibxp5L+71QU4PSvGLLurvms9yoHOu3e93Lx12Eg6vPQ6PsIRRkBtKji/yQMqPp98UD4ER+8+cmGYP9puwL2bL8m9scjnPdq6iTt5qIi8vyGPux3sOT2hjzi7NodsPa12gruR5dG8rKeBOki6gT9PeeO/TGI+v7D9Aj7xFtG99UUkPpYISL/hcEc+T/zPPSTL5z2vL4s7w7CIvKuKu7uG7zg9cG1JuzaHbD3RdoK7mOXRvC2+SDpPMV4/2aCiPNILMj//bwA9zTZyv4F7i79pfHE/xZ4Cv7NGSD+xyOc9wrmJO+uoiLyu2MK7U+w5PTWOOLsjh2w9hnOCuwXk0bzdtoE6lGgOSxBLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 1.0513377 -0.15467867 0.11316098]\n [ 0.59741807 -0.18328923 0.11317576]\n [ 0.5645057 1.0642276 0.1131789 ]\n [-1.0817435 0.7560466 0.11317794]\n [-0.9550922 -1.0313127 0.1131789 ]\n [-1.2256277 0.10432252 0.11317794]\n [ 0.0984588 -0.11290103 0.11317585]\n [-0.45625097 -0.9655949 0.1131789 ]\n [ 0.62207884 1.0654732 0.1131789 ]\n [ 0.9754589 -1.0034087 0.11317227]\n [-0.6177292 0.7044829 0.11315827]\n [-0.74987197 0.82191813 0.11317576]\n [ 0.76633114 0.5598119 0.11317794]\n [-0.09396143 -0.09823533 0.11317576]\n [ 0.19476654 0.10155546 0.11318043]\n [-0.51023513 0.7823288 0.11317576]]", "desired_goal": "[[-0.29097253 -1.5320803 -1.0891663 ]\n [-1.5754861 -0.25629756 0.814247 ]\n [ 0.66374743 -0.58227 -1.0527301 ]\n [-0.73531616 1.2738725 0.80354387]\n [-1.0261064 -0.5426036 0.05821844]\n [ 0.4557239 0.49314705 -0.73766327]\n [ 0.5725081 0.8446792 0.14197813]\n [-0.2862639 -1.1557128 0.59293395]\n [ 0.36267585 0.22248574 1.3654636 ]\n [ 0.9416298 0.8930944 -1.0891663 ]\n [-1.4004582 1.1212403 0.43159473]\n [ 0.6365824 0.03009056 0.40595177]\n [ 0.78700364 0.6791851 -0.17086002]\n [-0.4681677 0.29486153 1.0852652 ]\n [-1.1968038 0.5468609 0.45394522]\n [ 0.94286627 -1.3938756 -0.02840291]]", "observation": "[[ 5.47123790e-01 1.44339025e-01 1.86118329e+00 1.80283532e-01\n 1.40299559e-01 1.72534306e-02 1.19041157e+00 1.05133772e+00\n -1.54678673e-01 1.13160975e-01 4.34788642e-03 -1.64794177e-02\n -5.97779592e-03 4.53075394e-02 -3.42220091e-03 5.79288304e-02\n -3.56360921e-03 -2.70609725e-02 1.16345519e-03]\n [ 1.30873048e+00 1.21057165e+00 4.72989649e-01 2.68905699e-01\n 6.21768594e-01 1.80702865e+00 -8.65824521e-01 5.97418070e-01\n -1.83289230e-01 1.13175757e-01 4.20311373e-03 -1.66819822e-02\n -5.46638435e-03 4.53912392e-02 -2.81607732e-03 5.77461347e-02\n -3.98143241e-03 -2.56221611e-02 9.89504158e-04]\n [-1.96834254e+00 1.91609609e+00 -7.24645615e-01 -1.58239973e+00\n 3.82566929e-01 -4.51179706e-02 -8.87749612e-01 5.64505696e-01\n 1.06422758e+00 1.13178901e-01 4.23344923e-03 -1.68954469e-02\n -6.51518628e-03 4.49086986e-02 -2.86385044e-03 5.79373799e-02\n -5.45399357e-03 -2.77083945e-02 5.39264409e-04]\n [ 1.49722278e+00 -3.87825012e-01 -7.32776344e-01 5.76644987e-02\n -1.10604286e+00 8.84792358e-02 9.39565361e-01 -1.08174348e+00\n 7.56046593e-01 1.13177940e-01 4.35200240e-03 -1.67315435e-02\n -5.41721610e-03 4.49273400e-02 -2.63638119e-03 5.75548820e-02\n -6.30179606e-03 -2.69463360e-02 7.66292738e-04]\n [ 1.41416526e+00 -4.77982044e-01 -7.41314411e-01 -1.10435553e-01\n -1.37389338e+00 1.26886383e-01 9.53900754e-01 -9.55092192e-01\n -1.03131270e+00 1.13178901e-01 4.23344877e-03 -1.68954507e-02\n -6.79247454e-03 4.49087210e-02 -2.86379759e-03 5.79373837e-02\n -5.45436190e-03 -2.77082063e-02 5.39093802e-04]\n [ 8.00766647e-02 -9.24090981e-01 -5.74918926e-01 6.69966578e-01\n 5.63613296e-01 9.91431773e-01 1.18089545e+00 -1.22562766e+00\n 1.04322523e-01 1.13177940e-01 4.24415665e-03 -1.68732628e-02\n -6.76428294e-03 4.56065051e-02 -3.30755161e-03 5.75548820e-02\n -2.50857417e-03 -2.35361252e-02 6.23598462e-04]\n [-7.07755029e-01 -3.04425144e+00 -6.50335491e-01 5.55104136e-01\n -5.03940582e-01 1.25355041e+00 9.49244440e-01 9.84587967e-02\n -1.12901032e-01 1.13175847e-01 4.19437466e-03 -1.66954342e-02\n -1.63044721e-01 4.53876480e-02 -2.81827059e-03 5.77461310e-02\n -3.98143381e-03 -2.56221574e-02 1.02118566e-03]\n [-5.82188293e-02 3.20216775e+00 -5.35581768e-01 -1.11334360e+00\n 1.66293192e+00 1.39516521e+00 1.22461736e+00 -4.56250966e-01\n -9.65594888e-01 1.13178901e-01 4.23344923e-03 -1.68954488e-02\n -6.64408039e-03 4.49087098e-02 -2.86382600e-03 5.79373799e-02\n -5.45416446e-03 -2.77083069e-02 5.39185072e-04]\n [ 1.11752534e+00 1.98346555e+00 -2.47075751e-01 -8.22641328e-02\n -1.04382324e+00 -1.96513402e+00 -2.58488327e-01 6.22078836e-01\n 1.06547320e+00 1.13178901e-01 4.36888402e-03 -1.67174730e-02\n -5.70148183e-03 4.53763232e-02 -3.32597760e-03 5.79373799e-02\n -1.66088517e-03 -2.42983513e-02 8.50609969e-04]\n [ 9.60282981e-02 -1.12262416e+00 -6.88942432e-01 4.24184978e-01\n -1.24087834e+00 6.61520243e-01 1.21920717e+00 9.75458920e-01\n -1.00340867e+00 1.13172270e-01 4.37605102e-03 -1.66581236e-02\n -5.78104239e-03 4.55695540e-02 -3.36868642e-03 5.77294156e-02\n -3.90329212e-03 -2.55950987e-02 1.16381410e-03]\n [ 1.07812023e+00 2.06451893e+00 -5.34065127e-01 -2.88223535e-01\n 9.26280320e-01 2.21900091e-01 -1.12170470e+00 -6.17729187e-01\n 7.04482913e-01 1.13158271e-01 4.56849346e-03 -1.67070478e-02\n -6.45461865e-03 4.49917130e-02 -3.06813070e-03 5.77461347e-02\n -3.98144918e-03 -2.56221741e-02 6.32281357e-04]\n [ 1.19967306e+00 -1.08108066e-01 1.55331269e-01 6.59540057e-01\n -1.89412642e+00 2.11693597e+00 9.43794310e-01 -7.49871969e-01\n 8.21918130e-01 1.13175757e-01 4.20318544e-03 -1.66818928e-02\n -4.32958966e-03 4.53911908e-02 -2.81618163e-03 5.77461347e-02\n -3.98143241e-03 -2.56221611e-02 9.89177846e-04]\n [ 1.08210540e+00 -1.04480755e+00 -5.47066629e-01 1.26152039e-01\n -7.12397173e-02 1.47192195e-01 1.22249150e+00 7.66331136e-01\n 5.59811890e-01 1.13177940e-01 4.35199728e-03 -1.67315453e-02\n -5.85608603e-03 4.49274369e-02 -2.63632345e-03 5.75548820e-02\n -6.30209316e-03 -2.69458126e-02 7.66164914e-04]\n [ 1.82574213e-01 3.09483385e+00 -7.19397366e-01 1.66030064e-01\n 2.03600392e-01 4.67338681e-01 1.19047379e+00 -9.39614326e-02\n -9.82353315e-02 1.13175757e-01 4.20318265e-03 -1.66818965e-02\n -4.36803652e-03 4.53911908e-02 -2.81617814e-03 5.77461347e-02\n -3.98143241e-03 -2.56221611e-02 9.89188906e-04]\n [ 1.01349735e+00 -1.77713954e+00 -7.43687391e-01 1.27920866e-01\n -1.02094539e-01 1.60423115e-01 -7.81381011e-01 1.94766536e-01\n 1.01555459e-01 1.13180429e-01 4.24762769e-03 -1.66858491e-02\n -5.72331762e-03 4.51503024e-02 -3.07353958e-03 5.77461347e-02\n -3.98144918e-03 -2.56221741e-02 7.65773293e-04]\n [ 8.67939889e-01 1.98520888e-02 6.95492864e-01 3.13568078e-02\n -9.46148694e-01 -1.08970654e+00 9.43304598e-01 -5.10235131e-01\n 7.82328784e-01 1.13175757e-01 4.20305226e-03 -1.66821089e-02\n -5.94624039e-03 4.53913920e-02 -2.81609339e-03 5.77460639e-02\n -3.98105662e-03 -2.56214235e-02 9.89641645e-04]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVOwcAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAz0/mPVjUqLwOwKM8q516PTFSxLxhwaM8jGNrPeyZ+j2pwaM8SpADvruRsD2TwaM8VNTpvWXL/L2pwaM8rTQUvpAVIDyTwaM8/imeO46vgLxjwaM8ON5svfQB7b2pwaM8PAODPYXm+j2pwaM8S8LUPWMX9r0RwaM8zMmbvbkupD3Qv6M8QFu6vaFkwD1hwaM80GGkPeZtgT2TwaM8woGKvPIvZbxhwaM8waeAPDzEGjzMwaM8CeyCvQHitj1hwaM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAPMPTvHHaCb4K16M8f1ENvm0op7yAahU+T5BrPT8dS73Ylbc84GWEvR7F7j3lsBQ+m2W4vYWRPL3/Z8Q9mSohPcA+Pz2RKTE92O5KPZ0ToD3/wM89CGXQvOuyzr2mbAY+EMf/PDr8tzxNwTo+/3inPSL0qD0K16M8m1b7vdvI0j2k/fY9M9lhPWKGqztHhPM9jdKLPaS7gT34XqU90kApvfIQ7TxNxic+wevWvTLxUj3QBPo9mbGnPdJd+r2/q7g9lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAQAAAAAAAAV5GE9+ge9uf6VUT7EXO87JsxMPcdhW70qa6E9z0/mPVjUqLwOwKM8NhaXN9KsSDhbEpQ4HLVDNyE9Ibgj8KA31oSxOZz7qbr7Ums61nkePiCBPz66w8k97bkpPbI7lD6DOFA/jb4PPKudej0xUsS8YcGjPLT1brfXhWI3vUnCOcLAqDfAEcU3OFtsLRKtZzLWF1syt/MTOrw2jL7CO58+JTfjO9fsK78dnS4+O5CrvfuBAzyMY2s97Jn6PanBozyHJPu2YFS+t8U9gLk+/++3sx6cN054qDf3Zpy6e3j2upRjnLmTuDc+70TAvXHXzjt7hCO9G+0Rv9AjnLwt6489SpADvruRsD2TwaM8Z8eeN/MYqzaMaNE5CDXgt5KMLzgUeai3AHP2uoBwnLpsWQ8505gsPre34L1tcrk7GlrWvbMJNL/LYe+5M+uQPVTU6b1ly/y9qcGjPOYk+7YjVb63bYPVuan677dSKpw3GHmoN/pwnLrDcva6dY+cuTSMwrtjo0C+gJmWPOaaSD6ua4U+aSzWPjbBoD2tNBS+kBUgPJPBozzsGKu2XseetwzYzLnOjC84UDTgtwl5qLf2b5w6T3P2OjNXD7m4MN+99IoPv9m1TjwDThs+JX6KvuaWCz8KmJA9/imeO46vgLxjwaM85s+HtzBDPDd5iLy9sbWlN30wwzfuC5CuYLNTMpdafzJw3SM6YdDEvLN5CT8DPq8891r7vl22Tj9RJh0/EM6jPTjebL30Ae29qcGjPLMk+7a7VL63COGnuR3977caJJw3rHioN55rnLrTdfa6+3ecuRXeBD6PS6U+5/wxPYshwL2XAAq/gsOBvyda8Tw8A4M9heb6PanBozxSVL43gCT7Ni77cznZHZw3lP/vtz94qDfnePY6O2acOlxgnDkvXXy7f11kvglXHjz5V889FBkjv/1ahD5wbaM9S8LUPWMX9r0RwaM8QLnLN9QxkzdEDEM5kOYfOLBNCrjPnuu12dGEOB+4zDcigWs6Cy7/PY+WrD48MbA8G0sxvmDL4T4Uozo9h2tvOMzJm725LqQ90L+jPFjYjDiSOhs3EztbuZStqbcM2he2QJVPrKKUSy9841oul8r7uKTeDz5oMTe9/AOYPTR+RD6XSna/NaZ2P7Q2kD1AW7q9oWTAPWHBozw1sW63dMZiNyT4hzo2tqg32frEN5Ctdi3qjWcyUIZaMsHJEzqpHwA+nFxWvi8MqDxN5l28Kj9ivY2qGTwYqKM90GGkPeZtgT2TwaM868SeNygYqzaH5BQ5xR/gt+iSLzgWeai3FHv2uqhgnLqwFw85xrz0O4alBD/GXfA7IentOjHkpj2UZSg+RmyhPcKBirzyL2W8YcGjPIezbrdFxGI3cwOFOpK2qDeh+8Q3fFx2LZ6OZzJdi1oyLcsTOqne7T39Eq2+LoCzO+q8Urwij5C9WFWBPIDfPjzBp4A8PMQaPMzBozwfJpG2t4ZXNw6NZjl/W422UfE8tvCQIawoWFyuWgVcL0RODjlb4cY9ciu2vHSc7D3sBE29USD7vnL5Fr/1LZA9CeyCvQHitj1hwaM8ljBvtw8pYjc647o4pOGoNzsOxTeAT/axoLqqNGyUNTViBRQ6lGgOSxBLE4aUaBJ0lFKUdS4=", "achieved_goal": "[[ 0.11245691 -0.02060907 0.01998904]\n [ 0.06118552 -0.02396497 0.01998967]\n [ 0.05746798 0.1223639 0.01998981]\n [-0.1284801 0.08621546 0.01998976]\n [-0.11417452 -0.12343482 0.01998981]\n [-0.14473219 0.00977077 0.01998976]\n [ 0.00482678 -0.01570871 0.01998967]\n [-0.05782911 -0.11572638 0.01998981]\n [ 0.06397101 0.12250999 0.01998981]\n [ 0.10388621 -0.12016179 0.01998952]\n [-0.07606849 0.08016724 0.01998892]\n [-0.09099436 0.09394193 0.01998967]\n [ 0.08026469 0.0631979 0.01998976]\n [-0.01690758 -0.01398848 0.01998967]\n [ 0.01570499 0.0094462 0.01998987]\n [-0.06392676 0.08929826 0.01998967]]", "desired_goal": "[[-0.02584993 -0.13462235 0.02 ]\n [-0.1380062 -0.02040502 0.14591408]\n [ 0.05751067 -0.04958844 0.02241032]\n [-0.06464744 0.11658691 0.14520605]\n [-0.09003755 -0.04603722 0.09590148]\n [ 0.03934726 0.0466907 0.04325253]\n [ 0.04954419 0.07816241 0.10144233]\n [-0.0254388 -0.1009272 0.13127384]\n [ 0.03122285 0.02245914 0.18237801]\n [ 0.08177375 0.0824969 0.02 ]\n [-0.12272378 0.10292216 0.12060097]\n [ 0.05513878 0.00523453 0.11890464]\n [ 0.06827269 0.06334618 0.08074754]\n [-0.04132158 0.02893874 0.1638424 ]\n [-0.10494185 0.05149955 0.12207949]\n [ 0.08188171 -0.12224926 0.09017133]]", "observation": "[[ 5.51491566e-02 -3.60548322e-04 2.04673737e-01 7.30475970e-03\n 4.99993786e-02 -5.35600446e-02 7.88176805e-02 1.12456910e-01\n -2.06090659e-02 1.99890397e-02 1.80109455e-05 4.78446673e-05\n 7.06060891e-05 1.16650735e-05 -3.84423220e-05 1.91853087e-05\n 3.38590413e-04 -1.29686622e-03 8.97690363e-04]\n [ 1.54761642e-01 1.87016010e-01 9.85178500e-02 4.14370783e-02\n 2.89517939e-01 8.13362300e-01 8.77345819e-03 6.11855201e-02\n -2.39649732e-02 1.99896712e-02 -1.42431127e-05 1.35018117e-05\n 3.70575028e-04 2.01169205e-05 2.34924955e-05 1.34353015e-11\n 1.34853213e-08 1.27528974e-08 5.64392132e-04]\n [-2.73855090e-01 3.11002791e-01 6.93406397e-03 -6.71582639e-01\n 1.70521215e-01 -8.37711915e-02 8.02659523e-03 5.74679822e-02\n 1.22363895e-01 1.99898053e-02 -7.48463526e-06 -2.26890552e-05\n -2.44600844e-04 -2.86098766e-05 1.86109446e-05 2.00831819e-05\n -1.19325414e-03 -1.88042165e-03 -2.98288302e-04]\n [ 1.79415032e-01 -9.38814804e-02 6.31230371e-03 -3.99212651e-02\n -5.70024192e-01 -1.90600455e-02 7.02727810e-02 -1.28480107e-01\n 8.62154588e-02 1.99897643e-02 1.89279217e-05 5.09910160e-06\n 3.99414799e-04 -2.67275755e-05 4.18541676e-05 -2.00835420e-05\n -1.88025832e-03 -1.19353831e-03 1.36708550e-04]\n [ 1.68551728e-01 -1.09725408e-01 5.65939257e-03 -1.04664043e-01\n -7.03272998e-01 -4.56584938e-04 7.07611069e-02 -1.14174515e-01\n -1.23434819e-01 1.99898053e-02 -7.48467846e-06 -2.26894099e-05\n -4.07244457e-04 -2.86077429e-05 1.86163561e-05 2.00835493e-05\n -1.19355251e-03 -1.88025122e-03 -2.98615225e-04]\n [-5.93712367e-03 -1.88123271e-01 1.83837414e-02 1.95903391e-01\n 2.60587156e-01 4.18307573e-01 7.84935206e-02 -1.44732192e-01\n 9.77076590e-03 1.99897643e-02 -5.09909842e-06 -1.89279053e-05\n -3.90708796e-04 4.18543859e-05 -2.67272408e-05 -2.00835220e-05\n 1.19352224e-03 1.88026752e-03 -1.36700270e-04]\n [-1.08979642e-01 -5.60714006e-01 1.26165980e-02 1.51664779e-01\n -2.70493656e-01 5.45271277e-01 7.06024915e-02 4.82678320e-03\n -1.57087110e-02 1.99896749e-02 -1.61900643e-05 1.12213165e-05\n -9.20571759e-02 1.97541394e-05 2.32683906e-05 -6.55048099e-11\n 1.23226016e-08 1.48635513e-08 6.25095330e-04]\n [-2.40251441e-02 5.37013233e-01 2.13918742e-02 -4.90928382e-01\n 8.07470143e-01 6.13865912e-01 7.99828768e-02 -5.78291118e-02\n -1.15726382e-01 1.99898053e-02 -7.48465527e-06 -2.26892207e-05\n -3.20203835e-04 -2.86088853e-05 1.86134603e-05 2.00833529e-05\n -1.19339279e-03 -1.88034249e-03 -2.98440311e-04]\n [ 1.29753426e-01 3.22842091e-01 4.34540771e-02 -9.38139781e-02\n -5.39071500e-01 -1.01377892e+00 2.94619333e-02 6.39710128e-02\n 1.22509994e-01 1.99898053e-02 2.26890297e-05 7.48463208e-06\n 2.32678576e-04 1.86105481e-05 -2.86100330e-05 2.00831546e-05\n 1.88043423e-03 1.19323225e-03 2.98264320e-04]\n [-3.85076902e-03 -2.23012909e-01 9.66430549e-03 1.01242013e-01\n -6.37101412e-01 2.58506685e-01 7.97985792e-02 1.03886209e-01\n -1.20161794e-01 1.99895222e-02 2.42857495e-05 1.75469686e-05\n 1.86012185e-04 3.81232821e-05 -3.29741160e-05 -1.75550838e-06\n 6.33333766e-05 2.44044331e-05 8.98378086e-04]\n [ 1.24599539e-01 3.37086171e-01 2.15078518e-02 -1.73138067e-01\n 4.41004753e-01 4.55656797e-02 5.70821830e-05 -7.60684907e-02\n 8.01672414e-02 1.99889243e-02 6.71601738e-05 9.25235690e-06\n -2.09074744e-04 -2.02271985e-05 -2.26276734e-06 -2.94993197e-12\n 1.85155474e-10 4.97695080e-11 -1.20063480e-04]\n [ 1.40497744e-01 -4.47248518e-02 7.42263496e-02 1.91887677e-01\n -9.62075651e-01 9.63473618e-01 7.04168379e-02 -9.09943581e-02\n 9.39419344e-02 1.99896712e-02 -1.42271647e-05 1.35168557e-05\n 1.03736343e-03 2.01120092e-05 2.34818308e-05 1.40220197e-11\n 1.34782372e-08 1.27198092e-08 5.63766866e-04]\n [ 1.25120774e-01 -2.09337652e-01 2.05136221e-02 -1.35436775e-02\n -5.52360192e-02 9.37904138e-03 7.99104571e-02 8.02646875e-02\n 6.31978959e-02 1.99897643e-02 1.89267648e-05 5.09900929e-06\n 1.41995130e-04 -2.67176747e-05 4.18600684e-05 -2.00835457e-05\n -1.88049907e-03 -1.19306613e-03 1.36463670e-04]\n [ 7.46879261e-03 5.18150687e-01 7.33539741e-03 1.81511429e-03\n 8.14899281e-02 1.64449990e-01 7.88197964e-02 -1.69075765e-02\n -1.39884818e-02 1.99896712e-02 -1.42277049e-05 1.35163473e-05\n 1.01481227e-03 2.01121766e-05 2.34821946e-05 1.40040167e-11\n 1.34783971e-08 1.27209576e-08 5.63788053e-04]\n [ 1.16147347e-01 -3.38035494e-01 5.47792669e-03 -1.28624234e-02\n -7.05855042e-02 1.57877654e-02 1.16499662e-02 1.57049913e-02\n 9.44619998e-03 1.99898705e-02 -4.32577463e-06 1.28463644e-05\n 2.19870562e-04 -4.21277900e-06 -2.81546477e-06 -2.29599326e-12\n -5.01005071e-11 2.00107847e-10 1.35713315e-04]\n [ 9.71095189e-02 -2.22375132e-02 1.15532786e-01 -5.00535220e-02\n -4.90480930e-01 -5.89743733e-01 7.04001561e-02 -6.39267638e-02\n 8.92982557e-02 1.99896712e-02 -1.42568224e-05 1.34802094e-05\n 8.91149539e-05 2.01322327e-05 2.34908566e-05 -7.16858040e-09\n 3.18007551e-07 6.76437367e-07 5.64655405e-04]]"}, "_episode_num": 2061, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCRYTqSowVWMAWyUSzKMAXSUR0CIyYSZjQRgdX2UKGgGR8AnLr4WUKRdaAdLMmgIR0CIxOieumrKdX2UKGgGR8ArZWz4UN8WaAdLMmgIR0CIx3i4J/oadX2UKGgGR8AfPrkbPyCnaAdLMmgIR0CIyZGDtgKGdX2UKGgGR8AoGXUpd8iOaAdLMmgIR0CIwQBuGbkPdX2UKGgGR8Avn2/zreImaAdLMmgIR0CIx9Pt2LYPdX2UKGgGR8AsRKRMewLWaAdLMmgIR0CIv2KhtcfOdX2UKGgGR8Aji1a4c3l0aAdLMmgIR0CIw3rP+n63dX2UKGgGR8AnecWj4593aAdLMmgIR0CIwBeD3/PxdX2UKGgGR8AoCJqIrOJMaAdLMmgIR0CIycbedkJ8dX2UKGgGR8Adt2dNFjNIaAdLMmgIR0CI0nehwl0HdX2UKGgGR8Awe5I6Kcd6aAdLMmgIR0CIzyfW+XZ5dX2UKGgGR8AQ4BEKE385aAdLMmgIR0CI15n4fwI/dX2UKGgGR8AWS49X9zfaaAdLMmgIR0CIz7/Ot4iYdX2UKGgGR7+oBYFJQLuyaAdLAWgIR0CI0EZMtbs4dX2UKGgGR8Ar30/W1+iKaAdLMmgIR0CI1aKtPpIMdX2UKGgGR8Ag/D1Gsmv4aAdLMmgIR0CI048p1A7gdX2UKGgGR8ArLFUADJU6aAdLMmgIR0CI5ZRWLgn/dX2UKGgGR8AvLddmg8KYaAdLMmgIR0CI4QlyBCladX2UKGgGR8AjvoJzDGcXaAdLMmgIR0CI45RplBhQdX2UKGgGR8AkDlJ6IFeOaAdLMmgIR0CI5ZFuNxVAdX2UKGgGR8AZrTH80k4WaAdLMmgIR0CI3QtSQ5mzdX2UKGgGR8AipKEnLJS0aAdLMmgIR0CI4+u9OARTdX2UKGgGR8AXutGNJe3QaAdLMmgIR0CI23lGPPszdX2UKGgGR8ArhlFMIu5CaAdLMmgIR0CI34t3fQ8fdX2UKGgGR8AmdxLCemNzaAdLMmgIR0CI3G3R5TqCdX2UKGgGR8AjdR8+iaiLaAdLMmgIR0CI5fmcvugIdX2UKGgGR7+mfywwCbMHaAdLAWgIR0CI5nQ9ic5KdX2UKGgGR8AucyULUkOaaAdLMmgIR0CI7n+wTufFdX2UKGgGR8AslKp1ie/YaAdLMmgIR0CI6sCg9NeudX2UKGgGR8AglpHqeK8+aAdLMmgIR0CI81vE0iyIdX2UKGgGR8Ah4rc0tRNzaAdLMmgIR0CI7Oj9GZuydX2UKGgGR8AYaY0EX+ERaAdLMmgIR0CI8mbiIciodX2UKGgGR8Ak2SeyzHCGaAdLMmgIR0CI8NAQg9vCdX2UKGgGR8AYm9xp+MIeaAdLMmgIR0CJAv/n4fwJdX2UKGgGR8AlAkgOjIq9aAdLMmgIR0CI/uKaXrt3dX2UKGgGR8AiFU9ZA6dUaAdLMmgIR0CJAW3Zwn6VdX2UKGgGR8AhJzLfUF0QaAdLMmgIR0CJAzykKu0UdX2UKGgGR8Anxs2vStvGaAdLMmgIR0CI+qvTPSlWdX2UKGgGR8AjMX531SOzaAdLMmgIR0CJAWU6gdwOdX2UKGgGR8AnEEL6UJOWaAdLMmgIR0CI+P8uzyBkdX2UKGgGR8AeJAood+5OaAdLMmgIR0CI/RaA4GUwdX2UKGgGR8AguRywOe8PaAdLMmgIR0CI+bUpd8iOdX2UKGgGR8At/ZvDP4VRaAdLMmgIR0CJBAfPHDJmdX2UKGgGR8ANMRJ2+wkgaAdLMmgIR0CJDmmKIi1RdX2UKGgGR8Aroiml67d0aAdLMmgIR0CJDYwKSgXedX2UKGgGR8AgvK02LpA2aAdLMmgIR0CJG0dIXj2jdX2UKGgGR8Ar9e9i+cpcaAdLMmgIR0CJGT69kBjndX2UKGgGR8AgtwCr92ovaAdLMmgIR0CJHsS8J2MbdX2UKGgGR8AilgYxcmjTaAdLMmgIR0CJHiP5pJwsdX2UKGgGR8AfKMCLdepoaAdLMmgIR0CJL87UXpGGdX2UKGgGR8AlYlenhsInaAdLMmgIR0CJLj3ztkWidX2UKGgGR8ARJ/LDAJswaAdLMmgIR0CJMty1/lQudX2UKGgGR8Ao0rPt2LYPaAdLMmgIR0CJNR5BTn7pdX2UKGgGR8AgxSF49ovjaAdLMmgIR0CJLKdDpkf+dX2UKGgGR8AigPDHfdhzaAdLMmgIR0CJNoGxD9fkdX2UKGgGR8An3JSzgMtsaAdLMmgIR0CJLiYkVvdedX2UKGgGR8AtsdK/VRUFaAdLMmgIR0CJMmlwcYIjdX2UKGgGR8Ao46xxDLKWaAdLMmgIR0CJNWXZXdTHdX2UKGgGR8AUoSPEKmbcaAdLMmgIR0CJTNV6NVBEdX2UKGgGR8AehdX1anrIaAdLMmgIR0CJWi+hXbM5dX2UKGgGR8AYVy2hIvrXaAdLMmgIR0CJVqi0v4/NdX2UKGgGR8AnlLB9Cu2aaAdLMmgIR0CJXyeI2wV1dX2UKGgGR8AnWvysjmjkaAdLMmgIR0CJWbXHR1HOdX2UKGgGR8AmtnnMdLg5aAdLMmgIR0CJXwSpR4yHdX2UKGgGR8AvL4Ju2qkuaAdLMmgIR0CJXWCoS+QEdX2UKGgGR8AqmRmK64DtaAdLMmgIR0CJbxMZgogFdX2UKGgGR8AvWj3VTaTPaAdLMmgIR0CJaucG1QZXdX2UKGgGR8Adhld1MdtEaAdLMmgIR0CJbZTefqX4dX2UKGgGR8AbRwrDqGDdaAdLMmgIR0CJb3nr6ciGdX2UKGgGR8A6zs/IKc/daAdLMmgIR0CJZvhTfixWdX2UKGgGR8AZ/lwLmZE2aAdLMmgIR0CJbbzd1uBMdX2UKGgGR8AjrV5rxiG4aAdLMmgIR0CJZVsFdLQHdX2UKGgGR8ArHTl1bJOnaAdLMmgIR0CJaX6hQFcIdX2UKGgGR8AcLZ39rGipaAdLMmgIR0CJZl9kz41xdX2UKGgGR8Ah+r5IpYs/aAdLMmgIR0CJcJjQRf4RdX2UKGgGR8AniXdj5KvnaAdLMmgIR0CJehwAEMb4dX2UKGgGR8A2QWSU1Q67aAdLMmgIR0CJd0Bas6q9dX2UKGgGR8AhcExIre67aAdLMmgIR0CJf8+rU9ZBdX2UKGgGR8Atp3u/k/8maAdLMmgIR0CJeZtlZowmdX2UKGgGR8AwFe+23KB/aAdLMmgIR0CJfzD5TIeYdX2UKGgGR8AOJcE/0NBoaAdLMmgIR0CJff4bCJoCdX2UKGgGR7+mTJQtSQ5naAdLAWgIR0CJfobb1yvLdX2UKGgGR8ARekgwGnn/aAdLMmgIR0CJkBcNYr8SdX2UKGgGR8AwbnJkoWpIaAdLMmgIR0CJjyxgRbr1dX2UKGgGR8AvQeCkGiYcaAdLMmgIR0CJkarhisnzdX2UKGgGR8At7g4OtnwoaAdLMmgIR0CJk6SxJNCadX2UKGgGR8AUi27Wd3B6aAdLMmgIR0CJix4gzP8idX2UKGgGR8AIpNIsiB5HaAdLMmgIR0CJkkSamXPadX2UKGgGR8Ak25o4+8oQaAdLMmgIR0CJieOIZZSvdX2UKGgGR8AXwR02cawVaAdLMmgIR0CJjgF+uvECdX2UKGgGR8Ay6C4jKPn0aAdLMmgIR0CJirSP2f03dX2UKGgGR8AWw+LWI42kaAdLMmgIR0CJlTiZOSGKdX2UKGgGR8AUx5OafBepaAdLMmgIR0CJnY1hsqJ/dX2UKGgGR8AKgAMlTm4iaAdLMmgIR0CJmgUhV2iddX2UKGgGR8A2FelKsdT6aAdLMmgIR0CJorAdGRV7dX2UKGgGR8An5W5H3DekaAdLMmgIR0CJm45lOGj9dX2UKGgGR8ArVczImw7laAdLMmgIR0CJoTWTX8O1dX2UKGgGR8Ad8JeE7GNraAdLMmgIR0CJoOpy6tkndX2UKGgGR8AaZJFspG4JaAdLMmgIR0CJskKb8WKudWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYllLg=="}, "_n_updates": 6125, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRozlzqppYT4Zw2Bvh7iY0lQCMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 16, "buffer_size": 10000, "batch_size": 256, "learning_starts": 2000, "tau": 0.005, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=", "__module__": "stable_baselines3.her.her_replay_buffer", "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}", "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ", "__init__": "<function HerReplayBuffer.__init__ at 0x7fadee7aa170>", "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7fadee7aa200>", "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7fadee7aa290>", "set_env": "<function HerReplayBuffer.set_env at 0x7fadee7aa320>", "add": "<function HerReplayBuffer.add at 0x7fadee7aa3b0>", "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7fadee7aa440>", "sample": "<function HerReplayBuffer.sample at 0x7fadee7aa4d0>", "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7fadee7aa560>", "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7fadee7aa5f0>", "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7fadee7aa680>", "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7fadee7aa710>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fadee7b9940>"}, "replay_buffer_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVggAAAAAAAAB9lCiMDm5fc2FtcGxlZF9nb2FslEsEjBdnb2FsX3NlbGVjdGlvbl9zdHJhdGVneZSMLXN0YWJsZV9iYXNlbGluZXMzLmhlci5nb2FsX3NlbGVjdGlvbl9zdHJhdGVneZSMFUdvYWxTZWxlY3Rpb25TdHJhdGVneZSTlEsAhZRSlHUu", "n_sampled_goal": 4, "goal_selection_strategy": "GoalSelectionStrategy.FUTURE"}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "target_entropy": -4.0, "ent_coef": "auto", "target_update_interval": 1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL2h5cG90aGUvbWluaWNvbmRhMy9lbnZzL2hmZHJsLXU2L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.10.13", "Stable-Baselines3": "2.2.1", "PyTorch": "2.1.0", "GPU Enabled": "False", "Numpy": "1.26.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1"}}
|
replay.mp4
ADDED
Binary file (832 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -10.523832631856203, "std_reward": 3.952413719666487, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-01-06T16:55:08.567309"}
|
sac-100k-v2-PandaPickAndPlaceDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c61630e4b23fccdbfc6f4da11a8b8c82033ba93662aaeb9f92f177ad4d1add3c
|
3 |
+
size 3319151
|
sac-100k-v2-PandaPickAndPlaceDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.2.1
|
sac-100k-v2-PandaPickAndPlaceDense-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:abc74358f24c33f97f2c6099ebd3bdb18a8cba3956b95302f78be927339cea4f
|
3 |
+
size 602702
|
sac-100k-v2-PandaPickAndPlaceDense-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6c95c970e1876461e372db4bd22b34f65cf0ad01b5ff9d307a1459836556ea80
|
3 |
+
size 1189290
|
sac-100k-v2-PandaPickAndPlaceDense-v3/data
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnNhYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "stable_baselines3.sac.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for SAC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7fadee7c1480>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fadee7c9240>"
|
10 |
+
},
|
11 |
+
"verbose": 0,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"use_sde": false
|
14 |
+
},
|
15 |
+
"num_timesteps": 100000,
|
16 |
+
"_total_timesteps": 100000,
|
17 |
+
"_num_timesteps_at_start": 0,
|
18 |
+
"seed": null,
|
19 |
+
"action_noise": null,
|
20 |
+
"start_time": 1704555603662125085,
|
21 |
+
"learning_rate": 0.0005,
|
22 |
+
"tensorboard_log": "./logs/sac-100k-v2/",
|
23 |
+
"_last_obs": {
|
24 |
+
":type:": "<class 'collections.OrderedDict'>",
|
25 |
+
":serialized:": "gAWVOwcAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAPJKGPxZkHr7xwOc9ZPAYPyywO76xyOc9coMQP5w4iD9Xyuc9knaKv0WMQT/Wyec97IB0vw4ChL9Xyuc9XuGcvwyn1T3Wyec9xKTJPag45729yOc9upnpvjoxd79Xyuc9j0AfP21hiD9Xyuc9rbd5P7JvgL/dxuc9gCMev/5YND+Gv+c9nPc/vzppUj+xyOc9Ry5EP9VPDz/Wyec92m7AvZsvyb2xyOc94XBHPk/8zz0ky+c9xZ4Cv7NGSD+xyOc9lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAWvqUvjUbxL/NaYu/h6nJv285g75+clA/WuspP6YPFb/cv4a/rj08v0EOoz8NtU0/dFeDvxLoCr92dm49pVTpPsV9/D6A1zy/5I8SP+U8WD+3YhE+L5GSvmbuk7+Fyhc/prC5Pk3TYz6Dx64/pw5xP9ahZD/NaYu/N0Kzv82Ejz/8+dw+EPciP3yA9jzp2M8+EnlJPxPfLT/u9S6+rbPvvhf4lj746Yo/3jCZvxP/Cz+Ca+g+r19xP4Rqsr83rei8lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAQAAAAAAABOEAw/nM0TPkE77j8/nDg+sKoPPhFXjTxoX5g/PJKGPxZkHr7xwOc9t3iOO9j/hrxj4cO7ZpQ5PQFHYLvIRm09cYtpu/mu3bwUf5g6e4SnPwP0mj+zK/I+Aq6JPjosHz+3TOc/raZdv2TwGD8ssDu+scjnPUa6iTunqIi8Wx+zuyrsOT3wjTi7NodsPa12gruR5dG8QLKBOqby+7+jQvU/YII5vxOMyr/Q38M+n804vY9DY79ygxA/nDiIP1fK5z2/uIo7UmiKvFh91bsv8jc9cK87u79PbT1qt7K7t/zivGxdDTr/pL8/AJHGvjuXO7+cMWw90JKNv5o0tT1bh3A/knaKv0WMQT/Wyec9PpuOO5cQibzngrG7uwU4PSPHLLurvms9TH/Ou5C+3LwJ4Ug6XgO1PxC69L7Ixj2/CSzivb3br7+B7gE+1zJ0P+yAdL8OAoS/V8rnPb64ijtUaIq8aJPeuzXyNz2Nrju7wE9tPYG6srtS/OK8+VENOjz/oz06kWy/4y0Tv+6CKz/2SBA/ec59P5Unlz9e4Zy/DKfVPdbJ5z2REos7zDmKvOum3bvjzTo9gsNYu6u+az3kZiS71c7AvPx4IzpvLzW/BNVCwGN8Jr9OGw4/QAIBv1d0oD+vAXM/xKTJPag45729yOc993CJO93EiLwy9Sa+Zug5PbyyOLs1h2w9sHaCu4/l0bxO2YU63nZuvVHwTEDjGwm/C4KOv/Ta1D/GlLI/Q8CcP7qZ6b46MXe/V8rnPb+4ijtTaIq8lrbZuzLyNz0Hrzu7v09tPdm4sruI/OK8GVgNOhILjz8z4v0/bQF9vhl6qL0AnIW/g4n7v5VYhL6PQB8/bWGIP1fK5z3bKI87FfOIvH/TuruG3Dk9pfhZu79PbT0Pstm6Vg3HvHj7Xjp8qsQ9JrKPv4heML/GLtk+GtWev2RZKT/7Dpw/rbd5P7JvgL/dxuc9+mSPO552iLzmbr27JKc6PS7FXLuudWw9YM5/u9Cs0bwfi5g62P+JPxQhBEB+uAi/CZKTvrUgbT/HOWM+BZSPv4AjHr/+WDQ/hr/nPU2zlTs43Yi8RIHTuztJOD2xEkm7NodsPdF2gruY5dG8r78lOuOOmT/DZ929KQ8fPp7XKD+8cvK/4XsHQIGccT+c9z+/OmlSP7HI5z3guok7d6iIvDvfjbsd7Dk9sI84uzaHbD2tdoK7keXRvE2ngTpugoo/QbyFv48MDL8ALgE+IeaRvY25Fj6aepw/Ry5EP9VPDz/Wyec9M5uOO5gQibxp5L+71QU4PSvGLLurvms9yoHOu3e93Lx12Eg6vPQ6PsIRRkBtKji/yQMqPp98UD4ER+8+cmGYP9puwL2bL8m9scjnPdq6iTt5qIi8vyGPux3sOT2hjzi7NodsPa12gruR5dG8rKeBOki6gT9PeeO/TGI+v7D9Aj7xFtG99UUkPpYISL/hcEc+T/zPPSTL5z2vL4s7w7CIvKuKu7uG7zg9cG1JuzaHbD3RdoK7mOXRvC2+SDpPMV4/2aCiPNILMj//bwA9zTZyv4F7i79pfHE/xZ4Cv7NGSD+xyOc9wrmJO+uoiLyu2MK7U+w5PTWOOLsjh2w9hnOCuwXk0bzdtoE6lGgOSxBLE4aUaBJ0lFKUdS4=",
|
26 |
+
"achieved_goal": "[[ 1.0513377 -0.15467867 0.11316098]\n [ 0.59741807 -0.18328923 0.11317576]\n [ 0.5645057 1.0642276 0.1131789 ]\n [-1.0817435 0.7560466 0.11317794]\n [-0.9550922 -1.0313127 0.1131789 ]\n [-1.2256277 0.10432252 0.11317794]\n [ 0.0984588 -0.11290103 0.11317585]\n [-0.45625097 -0.9655949 0.1131789 ]\n [ 0.62207884 1.0654732 0.1131789 ]\n [ 0.9754589 -1.0034087 0.11317227]\n [-0.6177292 0.7044829 0.11315827]\n [-0.74987197 0.82191813 0.11317576]\n [ 0.76633114 0.5598119 0.11317794]\n [-0.09396143 -0.09823533 0.11317576]\n [ 0.19476654 0.10155546 0.11318043]\n [-0.51023513 0.7823288 0.11317576]]",
|
27 |
+
"desired_goal": "[[-0.29097253 -1.5320803 -1.0891663 ]\n [-1.5754861 -0.25629756 0.814247 ]\n [ 0.66374743 -0.58227 -1.0527301 ]\n [-0.73531616 1.2738725 0.80354387]\n [-1.0261064 -0.5426036 0.05821844]\n [ 0.4557239 0.49314705 -0.73766327]\n [ 0.5725081 0.8446792 0.14197813]\n [-0.2862639 -1.1557128 0.59293395]\n [ 0.36267585 0.22248574 1.3654636 ]\n [ 0.9416298 0.8930944 -1.0891663 ]\n [-1.4004582 1.1212403 0.43159473]\n [ 0.6365824 0.03009056 0.40595177]\n [ 0.78700364 0.6791851 -0.17086002]\n [-0.4681677 0.29486153 1.0852652 ]\n [-1.1968038 0.5468609 0.45394522]\n [ 0.94286627 -1.3938756 -0.02840291]]",
|
28 |
+
"observation": "[[ 5.47123790e-01 1.44339025e-01 1.86118329e+00 1.80283532e-01\n 1.40299559e-01 1.72534306e-02 1.19041157e+00 1.05133772e+00\n -1.54678673e-01 1.13160975e-01 4.34788642e-03 -1.64794177e-02\n -5.97779592e-03 4.53075394e-02 -3.42220091e-03 5.79288304e-02\n -3.56360921e-03 -2.70609725e-02 1.16345519e-03]\n [ 1.30873048e+00 1.21057165e+00 4.72989649e-01 2.68905699e-01\n 6.21768594e-01 1.80702865e+00 -8.65824521e-01 5.97418070e-01\n -1.83289230e-01 1.13175757e-01 4.20311373e-03 -1.66819822e-02\n -5.46638435e-03 4.53912392e-02 -2.81607732e-03 5.77461347e-02\n -3.98143241e-03 -2.56221611e-02 9.89504158e-04]\n [-1.96834254e+00 1.91609609e+00 -7.24645615e-01 -1.58239973e+00\n 3.82566929e-01 -4.51179706e-02 -8.87749612e-01 5.64505696e-01\n 1.06422758e+00 1.13178901e-01 4.23344923e-03 -1.68954469e-02\n -6.51518628e-03 4.49086986e-02 -2.86385044e-03 5.79373799e-02\n -5.45399357e-03 -2.77083945e-02 5.39264409e-04]\n [ 1.49722278e+00 -3.87825012e-01 -7.32776344e-01 5.76644987e-02\n -1.10604286e+00 8.84792358e-02 9.39565361e-01 -1.08174348e+00\n 7.56046593e-01 1.13177940e-01 4.35200240e-03 -1.67315435e-02\n -5.41721610e-03 4.49273400e-02 -2.63638119e-03 5.75548820e-02\n -6.30179606e-03 -2.69463360e-02 7.66292738e-04]\n [ 1.41416526e+00 -4.77982044e-01 -7.41314411e-01 -1.10435553e-01\n -1.37389338e+00 1.26886383e-01 9.53900754e-01 -9.55092192e-01\n -1.03131270e+00 1.13178901e-01 4.23344877e-03 -1.68954507e-02\n -6.79247454e-03 4.49087210e-02 -2.86379759e-03 5.79373837e-02\n -5.45436190e-03 -2.77082063e-02 5.39093802e-04]\n [ 8.00766647e-02 -9.24090981e-01 -5.74918926e-01 6.69966578e-01\n 5.63613296e-01 9.91431773e-01 1.18089545e+00 -1.22562766e+00\n 1.04322523e-01 1.13177940e-01 4.24415665e-03 -1.68732628e-02\n -6.76428294e-03 4.56065051e-02 -3.30755161e-03 5.75548820e-02\n -2.50857417e-03 -2.35361252e-02 6.23598462e-04]\n [-7.07755029e-01 -3.04425144e+00 -6.50335491e-01 5.55104136e-01\n -5.03940582e-01 1.25355041e+00 9.49244440e-01 9.84587967e-02\n -1.12901032e-01 1.13175847e-01 4.19437466e-03 -1.66954342e-02\n -1.63044721e-01 4.53876480e-02 -2.81827059e-03 5.77461310e-02\n -3.98143381e-03 -2.56221574e-02 1.02118566e-03]\n [-5.82188293e-02 3.20216775e+00 -5.35581768e-01 -1.11334360e+00\n 1.66293192e+00 1.39516521e+00 1.22461736e+00 -4.56250966e-01\n -9.65594888e-01 1.13178901e-01 4.23344923e-03 -1.68954488e-02\n -6.64408039e-03 4.49087098e-02 -2.86382600e-03 5.79373799e-02\n -5.45416446e-03 -2.77083069e-02 5.39185072e-04]\n [ 1.11752534e+00 1.98346555e+00 -2.47075751e-01 -8.22641328e-02\n -1.04382324e+00 -1.96513402e+00 -2.58488327e-01 6.22078836e-01\n 1.06547320e+00 1.13178901e-01 4.36888402e-03 -1.67174730e-02\n -5.70148183e-03 4.53763232e-02 -3.32597760e-03 5.79373799e-02\n -1.66088517e-03 -2.42983513e-02 8.50609969e-04]\n [ 9.60282981e-02 -1.12262416e+00 -6.88942432e-01 4.24184978e-01\n -1.24087834e+00 6.61520243e-01 1.21920717e+00 9.75458920e-01\n -1.00340867e+00 1.13172270e-01 4.37605102e-03 -1.66581236e-02\n -5.78104239e-03 4.55695540e-02 -3.36868642e-03 5.77294156e-02\n -3.90329212e-03 -2.55950987e-02 1.16381410e-03]\n [ 1.07812023e+00 2.06451893e+00 -5.34065127e-01 -2.88223535e-01\n 9.26280320e-01 2.21900091e-01 -1.12170470e+00 -6.17729187e-01\n 7.04482913e-01 1.13158271e-01 4.56849346e-03 -1.67070478e-02\n -6.45461865e-03 4.49917130e-02 -3.06813070e-03 5.77461347e-02\n -3.98144918e-03 -2.56221741e-02 6.32281357e-04]\n [ 1.19967306e+00 -1.08108066e-01 1.55331269e-01 6.59540057e-01\n -1.89412642e+00 2.11693597e+00 9.43794310e-01 -7.49871969e-01\n 8.21918130e-01 1.13175757e-01 4.20318544e-03 -1.66818928e-02\n -4.32958966e-03 4.53911908e-02 -2.81618163e-03 5.77461347e-02\n -3.98143241e-03 -2.56221611e-02 9.89177846e-04]\n [ 1.08210540e+00 -1.04480755e+00 -5.47066629e-01 1.26152039e-01\n -7.12397173e-02 1.47192195e-01 1.22249150e+00 7.66331136e-01\n 5.59811890e-01 1.13177940e-01 4.35199728e-03 -1.67315453e-02\n -5.85608603e-03 4.49274369e-02 -2.63632345e-03 5.75548820e-02\n -6.30209316e-03 -2.69458126e-02 7.66164914e-04]\n [ 1.82574213e-01 3.09483385e+00 -7.19397366e-01 1.66030064e-01\n 2.03600392e-01 4.67338681e-01 1.19047379e+00 -9.39614326e-02\n -9.82353315e-02 1.13175757e-01 4.20318265e-03 -1.66818965e-02\n -4.36803652e-03 4.53911908e-02 -2.81617814e-03 5.77461347e-02\n -3.98143241e-03 -2.56221611e-02 9.89188906e-04]\n [ 1.01349735e+00 -1.77713954e+00 -7.43687391e-01 1.27920866e-01\n -1.02094539e-01 1.60423115e-01 -7.81381011e-01 1.94766536e-01\n 1.01555459e-01 1.13180429e-01 4.24762769e-03 -1.66858491e-02\n -5.72331762e-03 4.51503024e-02 -3.07353958e-03 5.77461347e-02\n -3.98144918e-03 -2.56221741e-02 7.65773293e-04]\n [ 8.67939889e-01 1.98520888e-02 6.95492864e-01 3.13568078e-02\n -9.46148694e-01 -1.08970654e+00 9.43304598e-01 -5.10235131e-01\n 7.82328784e-01 1.13175757e-01 4.20305226e-03 -1.66821089e-02\n -5.94624039e-03 4.53913920e-02 -2.81609339e-03 5.77460639e-02\n -3.98105662e-03 -2.56214235e-02 9.89641645e-04]]"
|
29 |
+
},
|
30 |
+
"_last_episode_starts": {
|
31 |
+
":type:": "<class 'numpy.ndarray'>",
|
32 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
33 |
+
},
|
34 |
+
"_last_original_obs": {
|
35 |
+
":type:": "<class 'collections.OrderedDict'>",
|
36 |
+
":serialized:": "gAWVOwcAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAAAAAAAAAAz0/mPVjUqLwOwKM8q516PTFSxLxhwaM8jGNrPeyZ+j2pwaM8SpADvruRsD2TwaM8VNTpvWXL/L2pwaM8rTQUvpAVIDyTwaM8/imeO46vgLxjwaM8ON5svfQB7b2pwaM8PAODPYXm+j2pwaM8S8LUPWMX9r0RwaM8zMmbvbkupD3Qv6M8QFu6vaFkwD1hwaM80GGkPeZtgT2TwaM8woGKvPIvZbxhwaM8waeAPDzEGjzMwaM8CeyCvQHitj1hwaM8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolsAAAAAAAAAAPMPTvHHaCb4K16M8f1ENvm0op7yAahU+T5BrPT8dS73Ylbc84GWEvR7F7j3lsBQ+m2W4vYWRPL3/Z8Q9mSohPcA+Pz2RKTE92O5KPZ0ToD3/wM89CGXQvOuyzr2mbAY+EMf/PDr8tzxNwTo+/3inPSL0qD0K16M8m1b7vdvI0j2k/fY9M9lhPWKGqztHhPM9jdKLPaS7gT34XqU90kApvfIQ7TxNxic+wevWvTLxUj3QBPo9mbGnPdJd+r2/q7g9lGgOSxBLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWwAQAAAAAAAAV5GE9+ge9uf6VUT7EXO87JsxMPcdhW70qa6E9z0/mPVjUqLwOwKM8NhaXN9KsSDhbEpQ4HLVDNyE9Ibgj8KA31oSxOZz7qbr7Ums61nkePiCBPz66w8k97bkpPbI7lD6DOFA/jb4PPKudej0xUsS8YcGjPLT1brfXhWI3vUnCOcLAqDfAEcU3OFtsLRKtZzLWF1syt/MTOrw2jL7CO58+JTfjO9fsK78dnS4+O5CrvfuBAzyMY2s97Jn6PanBozyHJPu2YFS+t8U9gLk+/++3sx6cN054qDf3Zpy6e3j2upRjnLmTuDc+70TAvXHXzjt7hCO9G+0Rv9AjnLwt6489SpADvruRsD2TwaM8Z8eeN/MYqzaMaNE5CDXgt5KMLzgUeai3AHP2uoBwnLpsWQ8505gsPre34L1tcrk7GlrWvbMJNL/LYe+5M+uQPVTU6b1ly/y9qcGjPOYk+7YjVb63bYPVuan677dSKpw3GHmoN/pwnLrDcva6dY+cuTSMwrtjo0C+gJmWPOaaSD6ua4U+aSzWPjbBoD2tNBS+kBUgPJPBozzsGKu2XseetwzYzLnOjC84UDTgtwl5qLf2b5w6T3P2OjNXD7m4MN+99IoPv9m1TjwDThs+JX6KvuaWCz8KmJA9/imeO46vgLxjwaM85s+HtzBDPDd5iLy9sbWlN30wwzfuC5CuYLNTMpdafzJw3SM6YdDEvLN5CT8DPq8891r7vl22Tj9RJh0/EM6jPTjebL30Ae29qcGjPLMk+7a7VL63COGnuR3977caJJw3rHioN55rnLrTdfa6+3ecuRXeBD6PS6U+5/wxPYshwL2XAAq/gsOBvyda8Tw8A4M9heb6PanBozxSVL43gCT7Ni77cznZHZw3lP/vtz94qDfnePY6O2acOlxgnDkvXXy7f11kvglXHjz5V889FBkjv/1ahD5wbaM9S8LUPWMX9r0RwaM8QLnLN9QxkzdEDEM5kOYfOLBNCrjPnuu12dGEOB+4zDcigWs6Cy7/PY+WrD48MbA8G0sxvmDL4T4Uozo9h2tvOMzJm725LqQ90L+jPFjYjDiSOhs3EztbuZStqbcM2he2QJVPrKKUSy9841oul8r7uKTeDz5oMTe9/AOYPTR+RD6XSna/NaZ2P7Q2kD1AW7q9oWTAPWHBozw1sW63dMZiNyT4hzo2tqg32frEN5Ctdi3qjWcyUIZaMsHJEzqpHwA+nFxWvi8MqDxN5l28Kj9ivY2qGTwYqKM90GGkPeZtgT2TwaM868SeNygYqzaH5BQ5xR/gt+iSLzgWeai3FHv2uqhgnLqwFw85xrz0O4alBD/GXfA7IentOjHkpj2UZSg+RmyhPcKBirzyL2W8YcGjPIezbrdFxGI3cwOFOpK2qDeh+8Q3fFx2LZ6OZzJdi1oyLcsTOqne7T39Eq2+LoCzO+q8Urwij5C9WFWBPIDfPjzBp4A8PMQaPMzBozwfJpG2t4ZXNw6NZjl/W422UfE8tvCQIawoWFyuWgVcL0RODjlb4cY9ciu2vHSc7D3sBE29USD7vnL5Fr/1LZA9CeyCvQHitj1hwaM8ljBvtw8pYjc647o4pOGoNzsOxTeAT/axoLqqNGyUNTViBRQ6lGgOSxBLE4aUaBJ0lFKUdS4=",
|
37 |
+
"achieved_goal": "[[ 0.11245691 -0.02060907 0.01998904]\n [ 0.06118552 -0.02396497 0.01998967]\n [ 0.05746798 0.1223639 0.01998981]\n [-0.1284801 0.08621546 0.01998976]\n [-0.11417452 -0.12343482 0.01998981]\n [-0.14473219 0.00977077 0.01998976]\n [ 0.00482678 -0.01570871 0.01998967]\n [-0.05782911 -0.11572638 0.01998981]\n [ 0.06397101 0.12250999 0.01998981]\n [ 0.10388621 -0.12016179 0.01998952]\n [-0.07606849 0.08016724 0.01998892]\n [-0.09099436 0.09394193 0.01998967]\n [ 0.08026469 0.0631979 0.01998976]\n [-0.01690758 -0.01398848 0.01998967]\n [ 0.01570499 0.0094462 0.01998987]\n [-0.06392676 0.08929826 0.01998967]]",
|
38 |
+
"desired_goal": "[[-0.02584993 -0.13462235 0.02 ]\n [-0.1380062 -0.02040502 0.14591408]\n [ 0.05751067 -0.04958844 0.02241032]\n [-0.06464744 0.11658691 0.14520605]\n [-0.09003755 -0.04603722 0.09590148]\n [ 0.03934726 0.0466907 0.04325253]\n [ 0.04954419 0.07816241 0.10144233]\n [-0.0254388 -0.1009272 0.13127384]\n [ 0.03122285 0.02245914 0.18237801]\n [ 0.08177375 0.0824969 0.02 ]\n [-0.12272378 0.10292216 0.12060097]\n [ 0.05513878 0.00523453 0.11890464]\n [ 0.06827269 0.06334618 0.08074754]\n [-0.04132158 0.02893874 0.1638424 ]\n [-0.10494185 0.05149955 0.12207949]\n [ 0.08188171 -0.12224926 0.09017133]]",
|
39 |
+
"observation": "[[ 5.51491566e-02 -3.60548322e-04 2.04673737e-01 7.30475970e-03\n 4.99993786e-02 -5.35600446e-02 7.88176805e-02 1.12456910e-01\n -2.06090659e-02 1.99890397e-02 1.80109455e-05 4.78446673e-05\n 7.06060891e-05 1.16650735e-05 -3.84423220e-05 1.91853087e-05\n 3.38590413e-04 -1.29686622e-03 8.97690363e-04]\n [ 1.54761642e-01 1.87016010e-01 9.85178500e-02 4.14370783e-02\n 2.89517939e-01 8.13362300e-01 8.77345819e-03 6.11855201e-02\n -2.39649732e-02 1.99896712e-02 -1.42431127e-05 1.35018117e-05\n 3.70575028e-04 2.01169205e-05 2.34924955e-05 1.34353015e-11\n 1.34853213e-08 1.27528974e-08 5.64392132e-04]\n [-2.73855090e-01 3.11002791e-01 6.93406397e-03 -6.71582639e-01\n 1.70521215e-01 -8.37711915e-02 8.02659523e-03 5.74679822e-02\n 1.22363895e-01 1.99898053e-02 -7.48463526e-06 -2.26890552e-05\n -2.44600844e-04 -2.86098766e-05 1.86109446e-05 2.00831819e-05\n -1.19325414e-03 -1.88042165e-03 -2.98288302e-04]\n [ 1.79415032e-01 -9.38814804e-02 6.31230371e-03 -3.99212651e-02\n -5.70024192e-01 -1.90600455e-02 7.02727810e-02 -1.28480107e-01\n 8.62154588e-02 1.99897643e-02 1.89279217e-05 5.09910160e-06\n 3.99414799e-04 -2.67275755e-05 4.18541676e-05 -2.00835420e-05\n -1.88025832e-03 -1.19353831e-03 1.36708550e-04]\n [ 1.68551728e-01 -1.09725408e-01 5.65939257e-03 -1.04664043e-01\n -7.03272998e-01 -4.56584938e-04 7.07611069e-02 -1.14174515e-01\n -1.23434819e-01 1.99898053e-02 -7.48467846e-06 -2.26894099e-05\n -4.07244457e-04 -2.86077429e-05 1.86163561e-05 2.00835493e-05\n -1.19355251e-03 -1.88025122e-03 -2.98615225e-04]\n [-5.93712367e-03 -1.88123271e-01 1.83837414e-02 1.95903391e-01\n 2.60587156e-01 4.18307573e-01 7.84935206e-02 -1.44732192e-01\n 9.77076590e-03 1.99897643e-02 -5.09909842e-06 -1.89279053e-05\n -3.90708796e-04 4.18543859e-05 -2.67272408e-05 -2.00835220e-05\n 1.19352224e-03 1.88026752e-03 -1.36700270e-04]\n [-1.08979642e-01 -5.60714006e-01 1.26165980e-02 1.51664779e-01\n -2.70493656e-01 5.45271277e-01 7.06024915e-02 4.82678320e-03\n -1.57087110e-02 1.99896749e-02 -1.61900643e-05 1.12213165e-05\n -9.20571759e-02 1.97541394e-05 2.32683906e-05 -6.55048099e-11\n 1.23226016e-08 1.48635513e-08 6.25095330e-04]\n [-2.40251441e-02 5.37013233e-01 2.13918742e-02 -4.90928382e-01\n 8.07470143e-01 6.13865912e-01 7.99828768e-02 -5.78291118e-02\n -1.15726382e-01 1.99898053e-02 -7.48465527e-06 -2.26892207e-05\n -3.20203835e-04 -2.86088853e-05 1.86134603e-05 2.00833529e-05\n -1.19339279e-03 -1.88034249e-03 -2.98440311e-04]\n [ 1.29753426e-01 3.22842091e-01 4.34540771e-02 -9.38139781e-02\n -5.39071500e-01 -1.01377892e+00 2.94619333e-02 6.39710128e-02\n 1.22509994e-01 1.99898053e-02 2.26890297e-05 7.48463208e-06\n 2.32678576e-04 1.86105481e-05 -2.86100330e-05 2.00831546e-05\n 1.88043423e-03 1.19323225e-03 2.98264320e-04]\n [-3.85076902e-03 -2.23012909e-01 9.66430549e-03 1.01242013e-01\n -6.37101412e-01 2.58506685e-01 7.97985792e-02 1.03886209e-01\n -1.20161794e-01 1.99895222e-02 2.42857495e-05 1.75469686e-05\n 1.86012185e-04 3.81232821e-05 -3.29741160e-05 -1.75550838e-06\n 6.33333766e-05 2.44044331e-05 8.98378086e-04]\n [ 1.24599539e-01 3.37086171e-01 2.15078518e-02 -1.73138067e-01\n 4.41004753e-01 4.55656797e-02 5.70821830e-05 -7.60684907e-02\n 8.01672414e-02 1.99889243e-02 6.71601738e-05 9.25235690e-06\n -2.09074744e-04 -2.02271985e-05 -2.26276734e-06 -2.94993197e-12\n 1.85155474e-10 4.97695080e-11 -1.20063480e-04]\n [ 1.40497744e-01 -4.47248518e-02 7.42263496e-02 1.91887677e-01\n -9.62075651e-01 9.63473618e-01 7.04168379e-02 -9.09943581e-02\n 9.39419344e-02 1.99896712e-02 -1.42271647e-05 1.35168557e-05\n 1.03736343e-03 2.01120092e-05 2.34818308e-05 1.40220197e-11\n 1.34782372e-08 1.27198092e-08 5.63766866e-04]\n [ 1.25120774e-01 -2.09337652e-01 2.05136221e-02 -1.35436775e-02\n -5.52360192e-02 9.37904138e-03 7.99104571e-02 8.02646875e-02\n 6.31978959e-02 1.99897643e-02 1.89267648e-05 5.09900929e-06\n 1.41995130e-04 -2.67176747e-05 4.18600684e-05 -2.00835457e-05\n -1.88049907e-03 -1.19306613e-03 1.36463670e-04]\n [ 7.46879261e-03 5.18150687e-01 7.33539741e-03 1.81511429e-03\n 8.14899281e-02 1.64449990e-01 7.88197964e-02 -1.69075765e-02\n -1.39884818e-02 1.99896712e-02 -1.42277049e-05 1.35163473e-05\n 1.01481227e-03 2.01121766e-05 2.34821946e-05 1.40040167e-11\n 1.34783971e-08 1.27209576e-08 5.63788053e-04]\n [ 1.16147347e-01 -3.38035494e-01 5.47792669e-03 -1.28624234e-02\n -7.05855042e-02 1.57877654e-02 1.16499662e-02 1.57049913e-02\n 9.44619998e-03 1.99898705e-02 -4.32577463e-06 1.28463644e-05\n 2.19870562e-04 -4.21277900e-06 -2.81546477e-06 -2.29599326e-12\n -5.01005071e-11 2.00107847e-10 1.35713315e-04]\n [ 9.71095189e-02 -2.22375132e-02 1.15532786e-01 -5.00535220e-02\n -4.90480930e-01 -5.89743733e-01 7.04001561e-02 -6.39267638e-02\n 8.92982557e-02 1.99896712e-02 -1.42568224e-05 1.34802094e-05\n 8.91149539e-05 2.01322327e-05 2.34908566e-05 -7.16858040e-09\n 3.18007551e-07 6.76437367e-07 5.64655405e-04]]"
|
40 |
+
},
|
41 |
+
"_episode_num": 2061,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": 0.0,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCRYTqSowVWMAWyUSzKMAXSUR0CIyYSZjQRgdX2UKGgGR8AnLr4WUKRdaAdLMmgIR0CIxOieumrKdX2UKGgGR8ArZWz4UN8WaAdLMmgIR0CIx3i4J/oadX2UKGgGR8AfPrkbPyCnaAdLMmgIR0CIyZGDtgKGdX2UKGgGR8AoGXUpd8iOaAdLMmgIR0CIwQBuGbkPdX2UKGgGR8Avn2/zreImaAdLMmgIR0CIx9Pt2LYPdX2UKGgGR8AsRKRMewLWaAdLMmgIR0CIv2KhtcfOdX2UKGgGR8Aji1a4c3l0aAdLMmgIR0CIw3rP+n63dX2UKGgGR8AnecWj4593aAdLMmgIR0CIwBeD3/PxdX2UKGgGR8AoCJqIrOJMaAdLMmgIR0CIycbedkJ8dX2UKGgGR8Adt2dNFjNIaAdLMmgIR0CI0nehwl0HdX2UKGgGR8Awe5I6Kcd6aAdLMmgIR0CIzyfW+XZ5dX2UKGgGR8AQ4BEKE385aAdLMmgIR0CI15n4fwI/dX2UKGgGR8AWS49X9zfaaAdLMmgIR0CIz7/Ot4iYdX2UKGgGR7+oBYFJQLuyaAdLAWgIR0CI0EZMtbs4dX2UKGgGR8Ar30/W1+iKaAdLMmgIR0CI1aKtPpIMdX2UKGgGR8Ag/D1Gsmv4aAdLMmgIR0CI048p1A7gdX2UKGgGR8ArLFUADJU6aAdLMmgIR0CI5ZRWLgn/dX2UKGgGR8AvLddmg8KYaAdLMmgIR0CI4QlyBCladX2UKGgGR8AjvoJzDGcXaAdLMmgIR0CI45RplBhQdX2UKGgGR8AkDlJ6IFeOaAdLMmgIR0CI5ZFuNxVAdX2UKGgGR8AZrTH80k4WaAdLMmgIR0CI3QtSQ5mzdX2UKGgGR8AipKEnLJS0aAdLMmgIR0CI4+u9OARTdX2UKGgGR8AXutGNJe3QaAdLMmgIR0CI23lGPPszdX2UKGgGR8ArhlFMIu5CaAdLMmgIR0CI34t3fQ8fdX2UKGgGR8AmdxLCemNzaAdLMmgIR0CI3G3R5TqCdX2UKGgGR8AjdR8+iaiLaAdLMmgIR0CI5fmcvugIdX2UKGgGR7+mfywwCbMHaAdLAWgIR0CI5nQ9ic5KdX2UKGgGR8AucyULUkOaaAdLMmgIR0CI7n+wTufFdX2UKGgGR8AslKp1ie/YaAdLMmgIR0CI6sCg9NeudX2UKGgGR8AglpHqeK8+aAdLMmgIR0CI81vE0iyIdX2UKGgGR8Ah4rc0tRNzaAdLMmgIR0CI7Oj9GZuydX2UKGgGR8AYaY0EX+ERaAdLMmgIR0CI8mbiIciodX2UKGgGR8Ak2SeyzHCGaAdLMmgIR0CI8NAQg9vCdX2UKGgGR8AYm9xp+MIeaAdLMmgIR0CJAv/n4fwJdX2UKGgGR8AlAkgOjIq9aAdLMmgIR0CI/uKaXrt3dX2UKGgGR8AiFU9ZA6dUaAdLMmgIR0CJAW3Zwn6VdX2UKGgGR8AhJzLfUF0QaAdLMmgIR0CJAzykKu0UdX2UKGgGR8Anxs2vStvGaAdLMmgIR0CI+qvTPSlWdX2UKGgGR8AjMX531SOzaAdLMmgIR0CJAWU6gdwOdX2UKGgGR8AnEEL6UJOWaAdLMmgIR0CI+P8uzyBkdX2UKGgGR8AeJAood+5OaAdLMmgIR0CI/RaA4GUwdX2UKGgGR8AguRywOe8PaAdLMmgIR0CI+bUpd8iOdX2UKGgGR8At/ZvDP4VRaAdLMmgIR0CJBAfPHDJmdX2UKGgGR8ANMRJ2+wkgaAdLMmgIR0CJDmmKIi1RdX2UKGgGR8Aroiml67d0aAdLMmgIR0CJDYwKSgXedX2UKGgGR8AgvK02LpA2aAdLMmgIR0CJG0dIXj2jdX2UKGgGR8Ar9e9i+cpcaAdLMmgIR0CJGT69kBjndX2UKGgGR8AgtwCr92ovaAdLMmgIR0CJHsS8J2MbdX2UKGgGR8AilgYxcmjTaAdLMmgIR0CJHiP5pJwsdX2UKGgGR8AfKMCLdepoaAdLMmgIR0CJL87UXpGGdX2UKGgGR8AlYlenhsInaAdLMmgIR0CJLj3ztkWidX2UKGgGR8ARJ/LDAJswaAdLMmgIR0CJMty1/lQudX2UKGgGR8Ao0rPt2LYPaAdLMmgIR0CJNR5BTn7pdX2UKGgGR8AgxSF49ovjaAdLMmgIR0CJLKdDpkf+dX2UKGgGR8AigPDHfdhzaAdLMmgIR0CJNoGxD9fkdX2UKGgGR8An3JSzgMtsaAdLMmgIR0CJLiYkVvdedX2UKGgGR8AtsdK/VRUFaAdLMmgIR0CJMmlwcYIjdX2UKGgGR8Ao46xxDLKWaAdLMmgIR0CJNWXZXdTHdX2UKGgGR8AUoSPEKmbcaAdLMmgIR0CJTNV6NVBEdX2UKGgGR8AehdX1anrIaAdLMmgIR0CJWi+hXbM5dX2UKGgGR8AYVy2hIvrXaAdLMmgIR0CJVqi0v4/NdX2UKGgGR8AnlLB9Cu2aaAdLMmgIR0CJXyeI2wV1dX2UKGgGR8AnWvysjmjkaAdLMmgIR0CJWbXHR1HOdX2UKGgGR8AmtnnMdLg5aAdLMmgIR0CJXwSpR4yHdX2UKGgGR8AvL4Ju2qkuaAdLMmgIR0CJXWCoS+QEdX2UKGgGR8AqmRmK64DtaAdLMmgIR0CJbxMZgogFdX2UKGgGR8AvWj3VTaTPaAdLMmgIR0CJaucG1QZXdX2UKGgGR8Adhld1MdtEaAdLMmgIR0CJbZTefqX4dX2UKGgGR8AbRwrDqGDdaAdLMmgIR0CJb3nr6ciGdX2UKGgGR8A6zs/IKc/daAdLMmgIR0CJZvhTfixWdX2UKGgGR8AZ/lwLmZE2aAdLMmgIR0CJbbzd1uBMdX2UKGgGR8AjrV5rxiG4aAdLMmgIR0CJZVsFdLQHdX2UKGgGR8ArHTl1bJOnaAdLMmgIR0CJaX6hQFcIdX2UKGgGR8AcLZ39rGipaAdLMmgIR0CJZl9kz41xdX2UKGgGR8Ah+r5IpYs/aAdLMmgIR0CJcJjQRf4RdX2UKGgGR8AniXdj5KvnaAdLMmgIR0CJehwAEMb4dX2UKGgGR8A2QWSU1Q67aAdLMmgIR0CJd0Bas6q9dX2UKGgGR8AhcExIre67aAdLMmgIR0CJf8+rU9ZBdX2UKGgGR8Atp3u/k/8maAdLMmgIR0CJeZtlZowmdX2UKGgGR8AwFe+23KB/aAdLMmgIR0CJfzD5TIeYdX2UKGgGR8AOJcE/0NBoaAdLMmgIR0CJff4bCJoCdX2UKGgGR7+mTJQtSQ5naAdLAWgIR0CJfobb1yvLdX2UKGgGR8ARekgwGnn/aAdLMmgIR0CJkBcNYr8SdX2UKGgGR8AwbnJkoWpIaAdLMmgIR0CJjyxgRbr1dX2UKGgGR8AvQeCkGiYcaAdLMmgIR0CJkarhisnzdX2UKGgGR8At7g4OtnwoaAdLMmgIR0CJk6SxJNCadX2UKGgGR8AUi27Wd3B6aAdLMmgIR0CJix4gzP8idX2UKGgGR8AIpNIsiB5HaAdLMmgIR0CJkkSamXPadX2UKGgGR8Ak25o4+8oQaAdLMmgIR0CJieOIZZSvdX2UKGgGR8AXwR02cawVaAdLMmgIR0CJjgF+uvECdX2UKGgGR8Ay6C4jKPn0aAdLMmgIR0CJirSP2f03dX2UKGgGR8AWw+LWI42kaAdLMmgIR0CJlTiZOSGKdX2UKGgGR8AUx5OafBepaAdLMmgIR0CJnY1hsqJ/dX2UKGgGR8AKgAMlTm4iaAdLMmgIR0CJmgUhV2iddX2UKGgGR8A2FelKsdT6aAdLMmgIR0CJorAdGRV7dX2UKGgGR8An5W5H3DekaAdLMmgIR0CJm45lOGj9dX2UKGgGR8ArVczImw7laAdLMmgIR0CJoTWTX8O1dX2UKGgGR8Ad8JeE7GNraAdLMmgIR0CJoOpy6tkndX2UKGgGR8AaZJFspG4JaAdLMmgIR0CJskKb8WKudWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiImJiYmJiYmJiYmJiYiJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmJiYmIiYmJiYmJiYmJiYmJiYmJiYllLg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 6125,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
57 |
+
":serialized:": "gAWVMgQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEwAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBlGggSxOFlGgkdJRSlGgnaBwolhMAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAZRoIEsThZRoJHSUUpRoLEsThZRoLmgcKJZMAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLE4WUaCR0lFKUaDNoHCiWTAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBlGgWSxOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YnVoLE5oEE5oPE51Yi4=",
|
58 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (19,), float32))])",
|
59 |
+
"_shape": null,
|
60 |
+
"dtype": null,
|
61 |
+
"_np_random": null
|
62 |
+
},
|
63 |
+
"action_space": {
|
64 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
65 |
+
":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlIwUbnVtcHkucmFuZG9tLl9waWNrbGWUjBBfX2dlbmVyYXRvcl9jdG9ylJOUjAVQQ0c2NJRoMowUX19iaXRfZ2VuZXJhdG9yX2N0b3KUk5SGlFKUfZQojA1iaXRfZ2VuZXJhdG9ylIwFUENHNjSUjAVzdGF0ZZR9lChoPYoRozlzqppYT4Zw2Bvh7iY0lQCMA2luY5SKEKlzeES8M4FYghr3OtvajUF1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
66 |
+
"dtype": "float32",
|
67 |
+
"bounded_below": "[ True True True True]",
|
68 |
+
"bounded_above": "[ True True True True]",
|
69 |
+
"_shape": [
|
70 |
+
4
|
71 |
+
],
|
72 |
+
"low": "[-1. -1. -1. -1.]",
|
73 |
+
"high": "[1. 1. 1. 1.]",
|
74 |
+
"low_repr": "-1.0",
|
75 |
+
"high_repr": "1.0",
|
76 |
+
"_np_random": "Generator(PCG64)"
|
77 |
+
},
|
78 |
+
"n_envs": 16,
|
79 |
+
"buffer_size": 10000,
|
80 |
+
"batch_size": 256,
|
81 |
+
"learning_starts": 2000,
|
82 |
+
"tau": 0.005,
|
83 |
+
"gamma": 0.99,
|
84 |
+
"gradient_steps": 1,
|
85 |
+
"optimize_memory_usage": false,
|
86 |
+
"replay_buffer_class": {
|
87 |
+
":type:": "<class 'abc.ABCMeta'>",
|
88 |
+
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
|
89 |
+
"__module__": "stable_baselines3.her.her_replay_buffer",
|
90 |
+
"__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
|
91 |
+
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
92 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x7fadee7aa170>",
|
93 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7fadee7aa200>",
|
94 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7fadee7aa290>",
|
95 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x7fadee7aa320>",
|
96 |
+
"add": "<function HerReplayBuffer.add at 0x7fadee7aa3b0>",
|
97 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7fadee7aa440>",
|
98 |
+
"sample": "<function HerReplayBuffer.sample at 0x7fadee7aa4d0>",
|
99 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7fadee7aa560>",
|
100 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7fadee7aa5f0>",
|
101 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7fadee7aa680>",
|
102 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7fadee7aa710>",
|
103 |
+
"__abstractmethods__": "frozenset()",
|
104 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fadee7b9940>"
|
105 |
+
},
|
106 |
+
"replay_buffer_kwargs": {
|
107 |
+
":type:": "<class 'dict'>",
|
108 |
+
":serialized:": "gAWVggAAAAAAAAB9lCiMDm5fc2FtcGxlZF9nb2FslEsEjBdnb2FsX3NlbGVjdGlvbl9zdHJhdGVneZSMLXN0YWJsZV9iYXNlbGluZXMzLmhlci5nb2FsX3NlbGVjdGlvbl9zdHJhdGVneZSMFUdvYWxTZWxlY3Rpb25TdHJhdGVneZSTlEsAhZRSlHUu",
|
109 |
+
"n_sampled_goal": 4,
|
110 |
+
"goal_selection_strategy": "GoalSelectionStrategy.FUTURE"
|
111 |
+
},
|
112 |
+
"train_freq": {
|
113 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
114 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
115 |
+
},
|
116 |
+
"use_sde_at_warmup": false,
|
117 |
+
"target_entropy": -4.0,
|
118 |
+
"ent_coef": "auto",
|
119 |
+
"target_update_interval": 1,
|
120 |
+
"lr_schedule": {
|
121 |
+
":type:": "<class 'function'>",
|
122 |
+
":serialized:": "gAWVlwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZS9ob21lL2h5cG90aGUvbWluaWNvbmRhMy9lbnZzL2hmZHJsLXU2L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLg0MCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgMdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoHn2UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0BiTdLxqfyFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
123 |
+
},
|
124 |
+
"batch_norm_stats": [],
|
125 |
+
"batch_norm_stats_target": []
|
126 |
+
}
|
sac-100k-v2-PandaPickAndPlaceDense-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:14bdc47d78d59fe12abcb1f74d2877b926a68550f3987e3c561cfa9d9d4e8aa5
|
3 |
+
size 1940
|
sac-100k-v2-PandaPickAndPlaceDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:237c381a8742b64fcdc0c5936a5e96d6c60a985a9cd8bbbfdefb131544181f78
|
3 |
+
size 1489334
|
sac-100k-v2-PandaPickAndPlaceDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:231f7dafd758895f1225f3b9ff455d6103565a2641fa48ff953ecdd2b7cdf83c
|
3 |
+
size 1180
|
sac-100k-v2-PandaPickAndPlaceDense-v3/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.31 # 1 SMP Thu Oct 5 21:02:42 UTC 2023
|
2 |
+
- Python: 3.10.13
|
3 |
+
- Stable-Baselines3: 2.2.1
|
4 |
+
- PyTorch: 2.1.0
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.3
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:485276d1e85a71a0fd3f8ec1ef538a4c20d85e6b43e63ffddd295726638d8da8
|
3 |
+
size 3317
|