language: ar
datasets:
- Marefa-NER
Tebyan تبيـان
Marefa Arabic Named Entity Recognition Model
نموذج المعرفة لتصنيف أجزاء النص
Version: 1.2
Last Update: 22-05-2021
Model description
Marefa-NER is a Large Arabic Named Entity Recognition (NER) model built on a completely new dataset and targets to extract up to 9 different types of entities
Person, Location, Organization, Nationality, Job, Product, Event, Time, Art-Work
نموذج المعرفة لتصنيف أجزاء النص. نموذج جديد كليا من حيث البيانات المستخدمة في تدريب النموذج. كذلك يستهدف النموذج تصنيف حتى 9 أنواع مختلفة من أجزاء النص
شخص - مكان - منظمة - جنسية - وظيفة - منتج - حدث - توقيت - عمل إبداعي
How to use كيف تستخدم النموذج
You can test the model quickly by checking this Colab notebook
Install the following Python packages
$ pip3 install transformers==4.8.0 nltk==3.5 protobuf==3.15.3 torch==1.9.0
If you are using
Google Colab
, please restart your runtime after installing the packages.
[OPTIONAL]
Using of an Arabic segmentation tool approved better results in many scenarios. If you want to use FarasaPy
to segment the texts, please ensure that you have openjdk-11
installed in your machine, then install the package via:
# install openjdk-11-jdk
$ apt-get install -y build-essential
$ apt-get install -y openjdk-11-jdk
# instll FarasaPy
$ pip3 install farasapy==0.0.13
Do not forget to set USE_FARASAPY
to True
in the following code
Also, you can set USE_SENTENCE_TOKENIZER
to True
for getting better results for long texts.
# ==== Set configurations
# do you want to use FarasaPy Segmentation tool ?
USE_FARASAPY = False # set to True to use it
# do you want to split text into sentences [better for long texts] ?
USE_SENTENCE_TOKENIZER = False # set to True to use it
# ==== Import required modules
import logging
import re
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize, sent_tokenize
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
# disable INFO Logs
transformers_logger = logging.getLogger("transformers")
transformers_logger.setLevel(logging.WARNING)
def _extract_ner(sent: str, ner: pipeline) -> str:
grouped_ents = []
current_ent = {}
results = ner(sent)
for ent in results:
if len(current_ent) == 0:
current_ent = ent
continue
if current_ent["end"] == ent["start"] and current_ent["entity_group"] == ent["entity_group"]:
current_ent["word"] = current_ent["word"]+ent["word"]
else:
grouped_ents.append(current_ent)
current_ent = ent
if len(grouped_ents) > 0 and grouped_ents[-1] != ent:
grouped_ents.append(current_ent)
elif len(grouped_ents) == 0 and len(current_ent) > 0:
grouped_ents.append(current_ent)
return [ g for g in grouped_ents if len(g["word"].strip()) ]
if USE_FARASAPY:
from farasa.segmenter import FarasaSegmenter
segmenter = FarasaSegmenter()
def _segment_text(text: str, segmenter: FarasaSegmenter) -> str:
segmented = segmenter.segment(text)
f_segments = { w.replace("+",""): w.replace("و+","و ").replace("+","") for w in segmented.split(" ") if w.strip() != "" and w.startswith("و+") }
for s,t in f_segments.items():
text = text.replace(s, t)
return text
_ = _segment_text("نص تجريبي للتأكد من عمل الأداة", segmenter)
custom_labels = ["O", "B-job", "I-job", "B-nationality", "B-person", "I-person", "B-location",
"B-time", "I-time", "B-event", "I-event", "B-organization", "I-organization",
"I-location", "I-nationality", "B-product", "I-product", "B-artwork", "I-artwork"]
# ==== Import/Download the NER Model
m_name = "marefa-nlp/marefa-ner"
tokenizer = AutoTokenizer.from_pretrained(m_name)
model = AutoModelForTokenClassification.from_pretrained(m_name)
ar_ner = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True, aggregation_strategy="simple")
# ==== Model Inference
samples = [
"تلقى تعليمه في الكتاب ثم انضم الى الأزهر عام 1873م. تعلم على يد السيد جمال الدين الأفغاني والشيخ محمد عبده",
"بعد عودته إلى القاهرة، التحق نجيب الريحاني فرقة جورج أبيض، الذي كان قد ضمَّ - قُبيل ذلك - فرقته إلى فرقة سلامة حجازي . و منها ذاع صيته",
"امبارح اتفرجت على مباراة مانشستر يونايتد مع ريال مدريد في غياب الدون كرستيانو رونالدو",
"Government extends flight ban from India and Pakistan until June 21"
]
# [optional]
samples = [ " ".join(word_tokenize(sample.strip())) for sample in samples if sample.strip() != "" ]
for sample in samples:
ents = []
if USE_FARASAPY:
sample = _segment_text(sample, segmenter)
if USE_SENTENCE_TOKENIZER:
for sent in sent_tokenize(sample):
ents += _extract_ner(sent, ar_ner)
else:
ents = _extract_ner(sample, ar_ner)
# print the results
print("(", sample, ")")
for ent in ents:
print("\t", ent["word"], "=>", ent["entity_group"])
print("=========\n")
Output
( تلقى تعليمه في الكتاب ثم انضم الى الأزهر عام 1873م . تعلم على يد السيد جمال الدين الأفغاني والشيخ محمد عبده )
الأزهر => organization
عام 1873م => time
جمال الدين الأفغاني => person
محمد عبده => person
=========
( بعد عودته إلى القاهرة، التحق نجيب الريحاني فرقة جورج أبيض، الذي كان قد ضمَّ - قُبيل ذلك - فرقته إلى فرقة سلامة حجازي . و منها ذاع صيته )
القاهرة => location
نجيب الريحاني => person
فرقة جورج أبيض => organization
فرقة سلامة حجازي => organization
=========
( امبارح اتفرجت على مباراة مانشستر يونايتد مع ريال مدريد في غياب الدون كرستيانو رونالدو )
مانشستر يونايتد => organization
ريال مدريد => organization
كرستيانو رونالدو => person
=========
( Government extends flight ban from India and Pakistan until June 21 )
India => location
Pakistan => location
June 21 => time
=========
Fine-Tuning
Check this notebook to fine-tune the NER model
Acknowledgment شكر و تقدير
قام بإعداد البيانات التي تم تدريب النموذج عليها, مجموعة من المتطوعين الذين قضوا ساعات يقومون بتنقيح البيانات و مراجعتها
- على سيد عبد الحفيظ - إشراف
- نرمين محمد عطيه
- صلاح خيرالله
- احمد علي عبدربه
- عمر بن عبد العزيز سليمان
- محمد ابراهيم الجمال
- عبدالرحمن سلامه خلف
- إبراهيم كمال محمد سليمان
- حسن مصطفى حسن
- أحمد فتحي سيد
- عثمان مندو
- عارف الشريف
- أميرة محمد محمود
- حسن سعيد حسن
- عبد العزيز علي البغدادي
- واثق عبدالملك الشويطر
- عمرو رمضان عقل الحفناوي
- حسام الدين أحمد على
- أسامه أحمد محمد محمد
- حاتم محمد المفتي
- عبد الله دردير
- أدهم البغدادي
- أحمد صبري
- عبدالوهاب محمد محمد
- أحمد محمد عوض