Use an Arabic Segmentation Tool + Support the new Transformer Pipeline
Browse files
README.md
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
---
|
2 |
language: ar
|
3 |
datasets:
|
@@ -33,39 +34,98 @@ Person, Location, Organization, Nationality, Job, Product, Event, Time, Art-Work
|
|
33 |
|
34 |
Install the following Python packages
|
35 |
|
36 |
-
`$ pip3 install transformers==4.
|
37 |
|
38 |
> If you are using `Google Colab`, please restart your runtime after installing the packages.
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
-----------
|
41 |
|
42 |
```python
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
import logging
|
44 |
import re
|
45 |
|
46 |
import nltk
|
47 |
nltk.download('punkt')
|
48 |
-
from nltk.tokenize import word_tokenize
|
|
|
|
|
49 |
|
50 |
# disable INFO Logs
|
51 |
transformers_logger = logging.getLogger("transformers")
|
52 |
transformers_logger.setLevel(logging.WARNING)
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
custom_labels = ["O", "B-job", "I-job", "B-nationality", "B-person", "I-person", "B-location",
|
55 |
"B-time", "I-time", "B-event", "I-event", "B-organization", "I-organization",
|
56 |
"I-location", "I-nationality", "B-product", "I-product", "B-artwork", "I-artwork"]
|
57 |
|
58 |
-
|
59 |
-
from transformers import pipeline
|
60 |
-
|
61 |
-
# ===== import the model
|
62 |
m_name = "marefa-nlp/marefa-ner"
|
63 |
tokenizer = AutoTokenizer.from_pretrained(m_name)
|
64 |
model = AutoModelForTokenClassification.from_pretrained(m_name)
|
65 |
|
66 |
ar_ner = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True, aggregation_strategy="simple")
|
67 |
|
68 |
-
# Model Inference
|
69 |
samples = [
|
70 |
"تلقى تعليمه في الكتاب ثم انضم الى الأزهر عام 1873م. تعلم على يد السيد جمال الدين الأفغاني والشيخ محمد عبده",
|
71 |
"بعد عودته إلى القاهرة، التحق نجيب الريحاني فرقة جورج أبيض، الذي كان قد ضمَّ - قُبيل ذلك - فرقته إلى فرقة سلامة حجازي . و منها ذاع صيته",
|
@@ -73,44 +133,57 @@ samples = [
|
|
73 |
"Government extends flight ban from India and Pakistan until June 21"
|
74 |
]
|
75 |
|
76 |
-
#
|
77 |
samples = [ " ".join(word_tokenize(sample.strip())) for sample in samples if sample.strip() != "" ]
|
78 |
|
79 |
for sample in samples:
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
print("=========\n")
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
114 |
```
|
115 |
|
116 |
## Fine-Tuning
|
|
|
1 |
+
|
2 |
---
|
3 |
language: ar
|
4 |
datasets:
|
|
|
34 |
|
35 |
Install the following Python packages
|
36 |
|
37 |
+
`$ pip3 install transformers==4.8.0 nltk==3.5 protobuf==3.15.3 torch==1.9.0 `
|
38 |
|
39 |
> If you are using `Google Colab`, please restart your runtime after installing the packages.
|
40 |
|
41 |
+
[**OPTIONAL**]
|
42 |
+
Using of an Arabic segmentation tool approved better results in many scenarios. If you want to use `FarasaPy`to segment the texts, please ensure that you have `openjdk-11`installed in your machine, then install the package via:
|
43 |
+
```bash
|
44 |
+
# install openjdk-11-jdk
|
45 |
+
$ apt-get install -y build-essential
|
46 |
+
$ apt-get install -y openjdk-11-jdk
|
47 |
+
|
48 |
+
# instll FarasaPy
|
49 |
+
$ pip3 install farasapy==0.0.13
|
50 |
+
```
|
51 |
+
|
52 |
+
*Do not forget to set `USE_FARASAPY` to `True` in the following code*
|
53 |
+
|
54 |
+
Also, you can set `USE_SENTENCE_TOKENIZER` to `True` for getting better results for long texts.
|
55 |
+
|
56 |
-----------
|
57 |
|
58 |
```python
|
59 |
+
|
60 |
+
# ==== Set configurations
|
61 |
+
# do you want to use FarasaPy Segmentation tool ?
|
62 |
+
USE_FARASAPY = False # set to True to use it
|
63 |
+
|
64 |
+
# do you want to split text into sentences [better for long texts] ?
|
65 |
+
USE_SENTENCE_TOKENIZER = False # set to True to use it
|
66 |
+
|
67 |
+
# ==== Import required modules
|
68 |
import logging
|
69 |
import re
|
70 |
|
71 |
import nltk
|
72 |
nltk.download('punkt')
|
73 |
+
from nltk.tokenize import word_tokenize, sent_tokenize
|
74 |
+
|
75 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
76 |
|
77 |
# disable INFO Logs
|
78 |
transformers_logger = logging.getLogger("transformers")
|
79 |
transformers_logger.setLevel(logging.WARNING)
|
80 |
|
81 |
+
def _extract_ner(sent: str, ner: pipeline) -> str:
|
82 |
+
grouped_ents = []
|
83 |
+
current_ent = {}
|
84 |
+
|
85 |
+
results = ner(sent)
|
86 |
+
for ent in results:
|
87 |
+
if len(current_ent) == 0:
|
88 |
+
current_ent = ent
|
89 |
+
continue
|
90 |
+
|
91 |
+
if current_ent["end"] == ent["start"] and current_ent["entity_group"] == ent["entity_group"]:
|
92 |
+
current_ent["word"] = current_ent["word"]+ent["word"]
|
93 |
+
else:
|
94 |
+
grouped_ents.append(current_ent)
|
95 |
+
current_ent = ent
|
96 |
+
|
97 |
+
if len(grouped_ents) > 0 and grouped_ents[-1] != ent:
|
98 |
+
grouped_ents.append(current_ent)
|
99 |
+
elif len(grouped_ents) == 0 and len(current_ent) > 0:
|
100 |
+
grouped_ents.append(current_ent)
|
101 |
+
|
102 |
+
return [ g for g in grouped_ents if len(g["word"].strip()) ]
|
103 |
+
|
104 |
+
if USE_FARASAPY:
|
105 |
+
from farasa.segmenter import FarasaSegmenter
|
106 |
+
segmenter = FarasaSegmenter()
|
107 |
+
|
108 |
+
def _segment_text(text: str, segmenter: FarasaSegmenter) -> str:
|
109 |
+
segmented = segmenter.segment(text)
|
110 |
+
f_segments = { w.replace("+",""): w.replace("و+","و ").replace("+","") for w in segmented.split(" ") if w.strip() != "" and w.startswith("و+") }
|
111 |
+
for s,t in f_segments.items():
|
112 |
+
text = text.replace(s, t)
|
113 |
+
return text
|
114 |
+
|
115 |
+
_ = _segment_text("نص تجريبي للتأكد من عمل الأداة", segmenter)
|
116 |
+
|
117 |
custom_labels = ["O", "B-job", "I-job", "B-nationality", "B-person", "I-person", "B-location",
|
118 |
"B-time", "I-time", "B-event", "I-event", "B-organization", "I-organization",
|
119 |
"I-location", "I-nationality", "B-product", "I-product", "B-artwork", "I-artwork"]
|
120 |
|
121 |
+
# ==== Import/Download the NER Model
|
|
|
|
|
|
|
122 |
m_name = "marefa-nlp/marefa-ner"
|
123 |
tokenizer = AutoTokenizer.from_pretrained(m_name)
|
124 |
model = AutoModelForTokenClassification.from_pretrained(m_name)
|
125 |
|
126 |
ar_ner = pipeline("ner", model=model, tokenizer=tokenizer, grouped_entities=True, aggregation_strategy="simple")
|
127 |
|
128 |
+
# ==== Model Inference
|
129 |
samples = [
|
130 |
"تلقى تعليمه في الكتاب ثم انضم الى الأزهر عام 1873م. تعلم على يد السيد جمال الدين الأفغاني والشيخ محمد عبده",
|
131 |
"بعد عودته إلى القاهرة، التحق نجيب الريحاني فرقة جورج أبيض، الذي كان قد ضمَّ - قُبيل ذلك - فرقته إلى فرقة سلامة حجازي . و منها ذاع صيته",
|
|
|
133 |
"Government extends flight ban from India and Pakistan until June 21"
|
134 |
]
|
135 |
|
136 |
+
# [optional]
|
137 |
samples = [ " ".join(word_tokenize(sample.strip())) for sample in samples if sample.strip() != "" ]
|
138 |
|
139 |
for sample in samples:
|
140 |
+
ents = []
|
141 |
+
|
142 |
+
if USE_FARASAPY:
|
143 |
+
sample = _segment_text(sample, segmenter)
|
144 |
+
|
145 |
+
if USE_SENTENCE_TOKENIZER:
|
146 |
+
for sent in sent_tokenize(sample):
|
147 |
+
ents += _extract_ner(sent, ar_ner)
|
148 |
+
else:
|
149 |
+
ents = _extract_ner(sample, ar_ner)
|
150 |
+
|
151 |
+
# print the results
|
152 |
+
print("(", sample, ")")
|
153 |
+
for ent in ents:
|
154 |
+
print("\t", ent["word"], "=>", ent["entity_group"])
|
155 |
print("=========\n")
|
156 |
+
|
157 |
+
```
|
158 |
+
|
159 |
+
Output
|
160 |
+
|
161 |
+
```
|
162 |
+
( تلقى تعليمه في الكتاب ثم انضم الى الأزهر عام 1873م . تعلم على يد السيد جمال الدين الأفغاني والشيخ محمد عبده )
|
163 |
+
الأزهر => organization
|
164 |
+
عام 1873م => time
|
165 |
+
جمال الدين الأفغاني => person
|
166 |
+
محمد عبده => person
|
167 |
+
=========
|
168 |
+
|
169 |
+
( بعد عودته إلى القاهرة، التحق نجيب الريحاني فرقة جورج أبيض، الذي كان قد ضمَّ - قُبيل ذلك - فرقته إلى فرقة سلامة حجازي . و منها ذاع صيته )
|
170 |
+
القاهرة => location
|
171 |
+
نجيب الريحاني => person
|
172 |
+
فرقة جورج أبيض => organization
|
173 |
+
فرقة سلامة حجازي => organization
|
174 |
+
=========
|
175 |
+
|
176 |
+
( امبارح اتفرجت على مباراة مانشستر يونايتد مع ريال مدريد في غياب الدون كرستيانو رونالدو )
|
177 |
+
مانشستر يونايتد => organization
|
178 |
+
ريال مدريد => organization
|
179 |
+
كرستيانو رونالدو => person
|
180 |
+
=========
|
181 |
+
|
182 |
+
( Government extends flight ban from India and Pakistan until June 21 )
|
183 |
+
India => location
|
184 |
+
Pakistan => location
|
185 |
+
June 21 => time
|
186 |
+
=========
|
187 |
```
|
188 |
|
189 |
## Fine-Tuning
|