File size: 912 Bytes
fe00c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4e61b89
 
fe00c89
4e61b89
 
fe00c89
4e61b89
fe00c89
4e61b89
 
3f61b56
4e61b89
3f61b56
4e61b89
fe00c89
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
---
tags:
- FrozenLake-v1-8x8
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-FrozenLake-v1-8x8-Slippery
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: FrozenLake-v1-8x8
      type: FrozenLake-v1-8x8
    metrics:
    - type: mean_reward
      value: 0.00 +/- 0.00
      name: mean_reward
      verified: false
---

# **Q-Learning** Agent playing **FrozenLake-v1**  
This is a trained model of a **Q-Learning** agent playing **FrozenLake-v1** .  

## Usage  
```python

model = load_from_hub(repo_id="markeidsaune/q-FrozenLake-v1-8x8-Slippery", filename="q-learning.pkl")

# Don't forget to check if you need to add additional attributes (is_slippery=False etc)
env = gym.make(model["env_id"])

evaluate_agent(env, model["max_steps"], model["n_eval_episodes"], model["qtable"], model["eval_seed"])

```