marquesafonso commited on
Commit
8eaf58c
1 Parent(s): 5a77340

add readme

Browse files
Files changed (1) hide show
  1. README.md +61 -0
README.md CHANGED
@@ -1,3 +1,64 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+ # bertimbau-NER
5
+ This model card aims to simplify the use of the [portuguese Bert, a.k.a, Bertimbau](https://github.com/neuralmind-ai/portuguese-bert) for the Named Entity Recognition task.
6
+
7
+ For this model card the we used the BERT-CRF (selective scenario, 5 classes) model available in the [ner_evalutaion](https://github.com/neuralmind-ai/portuguese-bert/tree/master/ner_evaluation) folder of the original Bertimbau repo.
8
+
9
+ ## Usage
10
+
11
+ ```{python}
12
+ # Load model directly
13
+ from transformers import AutoTokenizer, AutoModelForTokenClassification
14
+
15
+ tokenizer = AutoTokenizer.from_pretrained("marquesafonso/bertimbau-large-ner")
16
+ model = AutoModelForTokenClassification.from_pretrained("marquesafonso/bertimbau-large-ner")
17
+
18
+ ```
19
+
20
+ ## Example
21
+
22
+ ```{python}
23
+ from transformers import pipeline
24
+
25
+ pipe = pipeline("token-classification", model="marquesafonso/bertimbau-large-ner")
26
+
27
+ sentence = "Acima de Ederson, abaixo de Rúben Dias. É entre os dois jogadores do Manchester City que se vai colocar Gonçalo Ramos no ranking de vendas mais avultadas do Benfica."
28
+
29
+ result = pipe([sentence])
30
+
31
+ print(f"{sentence}\n{result}")
32
+
33
+ # Acima de Ederson, abaixo de Rúben Dias. É entre os dois jogadores do Manchester City que se vai colocar Gonçalo Ramos no ranking de vendas mais avultadas do Benfica.
34
+ # [[{'entity': 'B-PESSOA', 'score': 0.99976975, 'index': 4, 'word': 'Ed', 'start': 9, 'end': 11}, {'entity': 'I-PESSOA', 'score': 0.9941182, 'index': 5, 'word': '##erson', 'start': 11, 'end': 16}, {'entity': 'B-PESSOA', 'score': 0.9998306, 'index': 9, 'word': 'R', 'start': 28, 'end': 29}, {'entity': 'I-PESSOA', 'score': 0.9737293, 'index': 10, 'word': '##ú', 'start': 29, 'end': 30}, {'entity': 'I-PESSOA', 'score': 0.9944133, 'index': 11, 'word': '##ben', 'start': 30, 'end': 33}, {'entity': 'I-PESSOA', 'score': 0.9994117, 'index': 12, 'word': 'Dias', 'start': 34, 'end': 38}, {'entity': 'B-ORGANIZACAO', 'score': 0.94043595, 'index': 20, 'word': 'Manchester', 'start': 69, 'end': 79}, {'entity': 'I-ORGANIZACAO', 'score': 0.9870952, 'index': 21, 'word': 'City', 'start': 80, 'end': 84}, {'entity': 'B-PESSOA', 'score': 0.9997652, 'index': 26, 'word': 'Gonçalo', 'start': 104, 'end': 111}, {'entity': 'I-PESSOA', 'score': 0.9989994, 'index': 27, 'word': 'Ramos', 'start': 112, 'end': 117}, {'entity': 'B-ORGANIZACAO', 'score': 0.9033079, 'index': 37, 'word': 'Benfica', 'start': 157, 'end': 164}]]
35
+ ```
36
+
37
+ ## Acknowledgements
38
+
39
+ This work is an adaptation of [portuguese Bert, a.k.a, Bertimbau](https://github.com/neuralmind-ai/portuguese-bert). You may check and/or cite their [work](http://arxiv.org/abs/1909.10649):
40
+
41
+ ```
42
+ @InProceedings{souza2020bertimbau,
43
+ author="Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto",
44
+ editor="Cerri, Ricardo and Prati, Ronaldo C.",
45
+ title="BERTimbau: Pretrained BERT Models for Brazilian Portuguese",
46
+ booktitle="Intelligent Systems",
47
+ year="2020",
48
+ publisher="Springer International Publishing",
49
+ address="Cham",
50
+ pages="403--417",
51
+ isbn="978-3-030-61377-8"
52
+ }
53
+
54
+
55
+ @article{souza2019portuguese,
56
+ title={Portuguese Named Entity Recognition using BERT-CRF},
57
+ author={Souza, F{\'a}bio and Nogueira, Rodrigo and Lotufo, Roberto},
58
+ journal={arXiv preprint arXiv:1909.10649},
59
+ url={http://arxiv.org/abs/1909.10649},
60
+ year={2019}
61
+ }
62
+ ```
63
+
64
+ Note that the authors - Fabio Capuano de Souza, Rodrigo Nogueira, Roberto de Alencar Lotufo - have used an MIT LICENSE for their work.