File size: 15,582 Bytes
2cd560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
import os
import random
import cv2
from scipy import ndimage

import gradio as gr
import argparse
import litellm

import numpy as np
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont

# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
import numpy as np

# diffusers
import torch
from diffusers import StableDiffusionInpaintPipeline

# BLIP
from transformers import BlipProcessor, BlipForConditionalGeneration

import openai

def show_anns(anns):
    if len(anns) == 0:
        return
    sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
    full_img = None

    # for ann in sorted_anns:
    for i in range(len(sorted_anns)):
        ann = anns[i]
        m = ann['segmentation']
        if full_img is None:
            full_img = np.zeros((m.shape[0], m.shape[1], 3))
            map = np.zeros((m.shape[0], m.shape[1]), dtype=np.uint16)
        map[m != 0] = i + 1
        color_mask = np.random.random((1, 3)).tolist()[0]
        full_img[m != 0] = color_mask
    full_img = full_img*255
    # anno encoding from https://github.com/LUSSeg/ImageNet-S
    res = np.zeros((map.shape[0], map.shape[1], 3))
    res[:, :, 0] = map % 256
    res[:, :, 1] = map // 256
    res.astype(np.float32)
    full_img = Image.fromarray(np.uint8(full_img))
    return full_img, res

def generate_caption(processor, blip_model, raw_image):
    # unconditional image captioning
    inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
    out = blip_model.generate(**inputs)
    caption = processor.decode(out[0], skip_special_tokens=True)
    return caption

def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo", openai_api_key=''):
    openai.api_key = openai_api_key
    openai.api_base = 'https://closeai.deno.dev/v1'
    prompt = [
        {
            'role': 'system',
            'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
                       f'List the nouns in singular form. Split them by "{split} ". ' + \
                       f'Caption: {caption}.'
        }
    ]
    response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
    reply = response['choices'][0]['message']['content']
    # sometimes return with "noun: xxx, xxx, xxx"
    tags = reply.split(':')[-1].strip()
    return tags

def transform_image(image_pil):

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image


def load_model(model_config_path, model_checkpoint_path, device):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
    load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    print(load_res)
    _ = model.eval()
    return model


def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."

    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    scores = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)
        scores.append(logit.max().item())

    return boxes_filt, torch.Tensor(scores), pred_phrases

def draw_mask(mask, draw, random_color=False):
    if random_color:
        color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255), 153)
    else:
        color = (30, 144, 255, 153)

    nonzero_coords = np.transpose(np.nonzero(mask))

    for coord in nonzero_coords:
        draw.point(coord[::-1], fill=color)

def draw_box(box, draw, label):
    # random color
    color = tuple(np.random.randint(0, 255, size=3).tolist())

    draw.rectangle(((box[0], box[1]), (box[2], box[3])), outline=color,  width=2)

    if label:
        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((box[0], box[1]), str(label), font)
        else:
            w, h = draw.textsize(str(label), font)
            bbox = (box[0], box[1], w + box[0], box[1] + h)
        draw.rectangle(bbox, fill=color)
        draw.text((box[0], box[1]), str(label), fill="white")

        draw.text((box[0], box[1]), label)



config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint='sam_vit_h_4b8939.pth' 
output_dir="outputs"
device="cuda"


blip_processor = None
blip_model = None
groundingdino_model = None
sam_predictor = None
sam_automask_generator = None
inpaint_pipeline = None

def run_grounded_sam(input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, scribble_mode, openai_api_key):

    global blip_processor, blip_model, groundingdino_model, sam_predictor, sam_automask_generator, inpaint_pipeline

    # make dir
    os.makedirs(output_dir, exist_ok=True)
    # load image
    image = input_image["image"]
    scribble = input_image["mask"]
    size = image.size # w, h

    if sam_predictor is None:
        # initialize SAM
        assert sam_checkpoint, 'sam_checkpoint is not found!'
        sam = build_sam(checkpoint=sam_checkpoint)
        sam.to(device=device)
        sam_predictor = SamPredictor(sam)
        sam_automask_generator = SamAutomaticMaskGenerator(sam)

    if groundingdino_model is None:
        groundingdino_model = load_model(config_file, ckpt_filenmae, device=device)

    image_pil = image.convert("RGB")
    image = np.array(image_pil)

    if task_type == 'scribble':
        sam_predictor.set_image(image)
        scribble = scribble.convert("RGB")
        scribble = np.array(scribble)
        scribble = scribble.transpose(2, 1, 0)[0]

        # 将连通域进行标记
        labeled_array, num_features = ndimage.label(scribble >= 255)

        # 计算每个连通域的质心
        centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
        centers = np.array(centers)

        point_coords = torch.from_numpy(centers)
        point_coords = sam_predictor.transform.apply_coords_torch(point_coords, image.shape[:2])
        point_coords = point_coords.unsqueeze(0).to(device)
        point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device)
        if scribble_mode == 'split':
            point_coords = point_coords.permute(1, 0, 2)
            point_labels = point_labels.permute(1, 0)
        masks, _, _ = sam_predictor.predict_torch(
            point_coords=point_coords if len(point_coords) > 0 else None,
            point_labels=point_labels if len(point_coords) > 0 else None,
            mask_input = None,
            boxes = None,
            multimask_output = False,
        )
    elif task_type == 'automask':
        masks = sam_automask_generator.generate(image)
    else:
        transformed_image = transform_image(image_pil)

        if task_type == 'automatic':
            # generate caption and tags
            # use Tag2Text can generate better captions
            # https://huggingface.co/spaces/xinyu1205/Tag2Text
            # but there are some bugs...
            blip_processor = blip_processor or BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
            blip_model = blip_model or BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large", torch_dtype=torch.float16).to("cuda")
            text_prompt = generate_caption(blip_processor, blip_model, image_pil)
            if len(openai_api_key) > 0:
                text_prompt = generate_tags(text_prompt, split=",", openai_api_key=openai_api_key)
            print(f"Caption: {text_prompt}")

        # run grounding dino model
        boxes_filt, scores, pred_phrases = get_grounding_output(
            groundingdino_model, transformed_image, text_prompt, box_threshold, text_threshold
        )

        # process boxes
        H, W = size[1], size[0]
        for i in range(boxes_filt.size(0)):
            boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
            boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
            boxes_filt[i][2:] += boxes_filt[i][:2]

        boxes_filt = boxes_filt.cpu()


        if task_type == 'seg' or task_type == 'inpainting' or task_type == 'automatic':
            sam_predictor.set_image(image)

            if task_type == 'automatic':
                # use NMS to handle overlapped boxes
                print(f"Before NMS: {boxes_filt.shape[0]} boxes")
                nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
                boxes_filt = boxes_filt[nms_idx]
                pred_phrases = [pred_phrases[idx] for idx in nms_idx]
                print(f"After NMS: {boxes_filt.shape[0]} boxes")
                print(f"Revise caption with number: {text_prompt}")

            transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)

            masks, _, _ = sam_predictor.predict_torch(
                point_coords = None,
                point_labels = None,
                boxes = transformed_boxes,
                multimask_output = False,
            )

    if task_type == 'det':
        image_draw = ImageDraw.Draw(image_pil)
        for box, label in zip(boxes_filt, pred_phrases):
            draw_box(box, image_draw, label)

        return [image_pil]
    elif task_type == 'automask':
        full_img, res = show_anns(masks)
        return [full_img]
    elif task_type == 'scribble':
        mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))

        mask_draw = ImageDraw.Draw(mask_image)

        for mask in masks:
            draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)

        image_pil = image_pil.convert('RGBA')
        image_pil.alpha_composite(mask_image)
        return [image_pil, mask_image]
    elif task_type == 'seg' or task_type == 'automatic':
        
        mask_image = Image.new('RGBA', size, color=(0, 0, 0, 0))

        mask_draw = ImageDraw.Draw(mask_image)
        for mask in masks:
            draw_mask(mask[0].cpu().numpy(), mask_draw, random_color=True)

        image_draw = ImageDraw.Draw(image_pil)

        for box, label in zip(boxes_filt, pred_phrases):
            draw_box(box, image_draw, label)

        if task_type == 'automatic':
            image_draw.text((10, 10), text_prompt, fill='black')

        image_pil = image_pil.convert('RGBA')
        image_pil.alpha_composite(mask_image)
        return [image_pil, mask_image]
    elif task_type == 'inpainting':
        assert inpaint_prompt, 'inpaint_prompt is not found!'
        # inpainting pipeline
        if inpaint_mode == 'merge':
            masks = torch.sum(masks, dim=0).unsqueeze(0)
            masks = torch.where(masks > 0, True, False)
        mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
        mask_pil = Image.fromarray(mask)
        
        if inpaint_pipeline is None:
            inpaint_pipeline = StableDiffusionInpaintPipeline.from_pretrained(
            "runwayml/stable-diffusion-inpainting", torch_dtype=torch.float16
            )
            inpaint_pipeline = inpaint_pipeline.to("cuda")

        image = inpaint_pipeline(prompt=inpaint_prompt, image=image_pil.resize((512, 512)), mask_image=mask_pil.resize((512, 512))).images[0]
        image = image.resize(size)

        return [image, mask_pil]
    else:
        print("task_type:{} error!".format(task_type))

if __name__ == "__main__":
    parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    parser.add_argument('--port', type=int, default=7589, help='port to run the server')
    parser.add_argument('--no-gradio-queue', action="store_true", help='path to the SAM checkpoint')
    args = parser.parse_args()

    print(args)

    block = gr.Blocks()
    if not args.no_gradio_queue:
        block = block.queue()

    with block:
        with gr.Row():
            with gr.Column():
                input_image = gr.Image(source='upload', type="pil", value="assets/demo1.jpg", tool="sketch")
                task_type = gr.Dropdown(["scribble", "automask", "det", "seg", "inpainting", "automatic"], value="automatic", label="task_type")
                text_prompt = gr.Textbox(label="Text Prompt")
                inpaint_prompt = gr.Textbox(label="Inpaint Prompt")
                run_button = gr.Button(label="Run")
                with gr.Accordion("Advanced options", open=False):
                    box_threshold = gr.Slider(
                        label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.05
                    )
                    text_threshold = gr.Slider(
                        label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
                    )
                    iou_threshold = gr.Slider(
                        label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.05
                    )
                    inpaint_mode = gr.Dropdown(["merge", "first"], value="merge", label="inpaint_mode")
                    scribble_mode = gr.Dropdown(["merge", "split"], value="split", label="scribble_mode")
                    openai_api_key= gr.Textbox(label="(Optional)OpenAI key, enable chatgpt")

            with gr.Column():
                gallery = gr.Gallery(
                    label="Generated images", show_label=False, elem_id="gallery"
                ).style(preview=True, grid=2, object_fit="scale-down")

        run_button.click(fn=run_grounded_sam, inputs=[
                        input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold, iou_threshold, inpaint_mode, scribble_mode, openai_api_key], outputs=gallery)

    block.queue(concurrency_count=100)
    block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)