File size: 13,003 Bytes
2cd560a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import torch.nn as nn


__all__ = ['repvit_m1']


def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    :param v:
    :param divisor:
    :param min_value:
    :return:
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v

from timm.models.layers import SqueezeExcite

import torch

# From https://github.com/facebookresearch/detectron2/blob/main/detectron2/layers/batch_norm.py # noqa
# Itself from https://github.com/facebookresearch/ConvNeXt/blob/d1fa8f6fef0a165b27399986cc2bdacc92777e40/models/convnext.py#L119  # noqa
class LayerNorm2d(nn.Module):
    def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight[:, None, None] * x + self.bias[:, None, None]
        return x
    
class Conv2d_BN(torch.nn.Sequential):
    def __init__(self, a, b, ks=1, stride=1, pad=0, dilation=1,
                 groups=1, bn_weight_init=1, resolution=-10000):
        super().__init__()
        self.add_module('c', torch.nn.Conv2d(
            a, b, ks, stride, pad, dilation, groups, bias=False))
        self.add_module('bn', torch.nn.BatchNorm2d(b))
        torch.nn.init.constant_(self.bn.weight, bn_weight_init)
        torch.nn.init.constant_(self.bn.bias, 0)

    @torch.no_grad()
    def fuse(self):
        c, bn = self._modules.values()
        w = bn.weight / (bn.running_var + bn.eps)**0.5
        w = c.weight * w[:, None, None, None]
        b = bn.bias - bn.running_mean * bn.weight / \
            (bn.running_var + bn.eps)**0.5
        m = torch.nn.Conv2d(w.size(1) * self.c.groups, w.size(
            0), w.shape[2:], stride=self.c.stride, padding=self.c.padding, dilation=self.c.dilation, groups=self.c.groups,
            device=c.weight.device)
        m.weight.data.copy_(w)
        m.bias.data.copy_(b)
        return m

class Residual(torch.nn.Module):
    def __init__(self, m, drop=0.):
        super().__init__()
        self.m = m
        self.drop = drop

    def forward(self, x):
        if self.training and self.drop > 0:
            return x + self.m(x) * torch.rand(x.size(0), 1, 1, 1,
                                              device=x.device).ge_(self.drop).div(1 - self.drop).detach()
        else:
            return x + self.m(x)
    
    @torch.no_grad()
    def fuse(self):
        if isinstance(self.m, Conv2d_BN):
            m = self.m.fuse()
            assert(m.groups == m.in_channels)
            identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1)
            identity = torch.nn.functional.pad(identity, [1,1,1,1])
            m.weight += identity.to(m.weight.device)
            return m
        elif isinstance(self.m, torch.nn.Conv2d):
            m = self.m
            assert(m.groups != m.in_channels)
            identity = torch.ones(m.weight.shape[0], m.weight.shape[1], 1, 1)
            identity = torch.nn.functional.pad(identity, [1,1,1,1])
            m.weight += identity.to(m.weight.device)
            return m
        else:
            return self


class RepVGGDW(torch.nn.Module):
    def __init__(self, ed) -> None:
        super().__init__()
        self.conv = Conv2d_BN(ed, ed, 3, 1, 1, groups=ed)
        self.conv1 = torch.nn.Conv2d(ed, ed, 1, 1, 0, groups=ed)
        self.dim = ed
        self.bn = torch.nn.BatchNorm2d(ed)
    
    def forward(self, x):
        return self.bn((self.conv(x) + self.conv1(x)) + x)
    
    @torch.no_grad()
    def fuse(self):
        conv = self.conv.fuse()
        conv1 = self.conv1
        
        conv_w = conv.weight
        conv_b = conv.bias
        conv1_w = conv1.weight
        conv1_b = conv1.bias
        
        conv1_w = torch.nn.functional.pad(conv1_w, [1,1,1,1])

        identity = torch.nn.functional.pad(torch.ones(conv1_w.shape[0], conv1_w.shape[1], 1, 1, device=conv1_w.device), [1,1,1,1])

        final_conv_w = conv_w + conv1_w + identity
        final_conv_b = conv_b + conv1_b

        conv.weight.data.copy_(final_conv_w)
        conv.bias.data.copy_(final_conv_b)

        bn = self.bn
        w = bn.weight / (bn.running_var + bn.eps)**0.5
        w = conv.weight * w[:, None, None, None]
        b = bn.bias + (conv.bias - bn.running_mean) * bn.weight / \
            (bn.running_var + bn.eps)**0.5
        conv.weight.data.copy_(w)
        conv.bias.data.copy_(b)
        return conv


class RepViTBlock(nn.Module):
    def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se, use_hs):
        super(RepViTBlock, self).__init__()
        assert stride in [1, 2]

        self.identity = stride == 1 and inp == oup
        assert(hidden_dim == 2 * inp)

        if stride == 2:
            self.token_mixer = nn.Sequential(
                Conv2d_BN(inp, inp, kernel_size, stride if inp != 320 else 1, (kernel_size - 1) // 2, groups=inp),
                SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
                Conv2d_BN(inp, oup, ks=1, stride=1, pad=0)
            )
            self.channel_mixer = Residual(nn.Sequential(
                    # pw
                    Conv2d_BN(oup, 2 * oup, 1, 1, 0),
                    nn.GELU() if use_hs else nn.GELU(),
                    # pw-linear
                    Conv2d_BN(2 * oup, oup, 1, 1, 0, bn_weight_init=0),
                ))
        else:
            # assert(self.identity)
            self.token_mixer = nn.Sequential(
                RepVGGDW(inp),
                SqueezeExcite(inp, 0.25) if use_se else nn.Identity(),
            )
            if self.identity:
                self.channel_mixer = Residual(nn.Sequential(
                        # pw
                        Conv2d_BN(inp, hidden_dim, 1, 1, 0),
                        nn.GELU() if use_hs else nn.GELU(),
                        # pw-linear
                        Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),
                    ))
            else:
                self.channel_mixer = nn.Sequential(
                        # pw
                        Conv2d_BN(inp, hidden_dim, 1, 1, 0),
                        nn.GELU() if use_hs else nn.GELU(),
                        # pw-linear
                        Conv2d_BN(hidden_dim, oup, 1, 1, 0, bn_weight_init=0),
                    )

    def forward(self, x):
        return self.channel_mixer(self.token_mixer(x))

from timm.models.vision_transformer import trunc_normal_
class BN_Linear(torch.nn.Sequential):
    def __init__(self, a, b, bias=True, std=0.02):
        super().__init__()
        self.add_module('bn', torch.nn.BatchNorm1d(a))
        self.add_module('l', torch.nn.Linear(a, b, bias=bias))
        trunc_normal_(self.l.weight, std=std)
        if bias:
            torch.nn.init.constant_(self.l.bias, 0)

    @torch.no_grad()
    def fuse(self):
        bn, l = self._modules.values()
        w = bn.weight / (bn.running_var + bn.eps)**0.5
        b = bn.bias - self.bn.running_mean * \
            self.bn.weight / (bn.running_var + bn.eps)**0.5
        w = l.weight * w[None, :]
        if l.bias is None:
            b = b @ self.l.weight.T
        else:
            b = (l.weight @ b[:, None]).view(-1) + self.l.bias
        m = torch.nn.Linear(w.size(1), w.size(0), device=l.weight.device)
        m.weight.data.copy_(w)
        m.bias.data.copy_(b)
        return m

class Classfier(nn.Module):
    def __init__(self, dim, num_classes, distillation=True):
        super().__init__()
        self.classifier = BN_Linear(dim, num_classes) if num_classes > 0 else torch.nn.Identity()
        self.distillation = distillation
        if distillation:
            self.classifier_dist = BN_Linear(dim, num_classes) if num_classes > 0 else torch.nn.Identity()

    def forward(self, x):
        if self.distillation:
            x = self.classifier(x), self.classifier_dist(x)
            if not self.training:
                x = (x[0] + x[1]) / 2
        else:
            x = self.classifier(x)
        return x

    @torch.no_grad()
    def fuse(self):
        classifier = self.classifier.fuse()
        if self.distillation:
            classifier_dist = self.classifier_dist.fuse()
            classifier.weight += classifier_dist.weight
            classifier.bias += classifier_dist.bias
            classifier.weight /= 2
            classifier.bias /= 2
            return classifier
        else:
            return classifier

class RepViT(nn.Module):
    def __init__(self, cfgs, num_classes=1000, distillation=False, img_size=1024):
        super(RepViT, self).__init__()
        # setting of inverted residual blocks
        self.cfgs = cfgs

        self.img_size = img_size

        # building first layer
        input_channel = self.cfgs[0][2]
        patch_embed = torch.nn.Sequential(Conv2d_BN(3, input_channel // 2, 3, 2, 1), torch.nn.GELU(),
                           Conv2d_BN(input_channel // 2, input_channel, 3, 2, 1))
        layers = [patch_embed]
        # building inverted residual blocks
        block = RepViTBlock
        for k, t, c, use_se, use_hs, s in self.cfgs:
            output_channel = _make_divisible(c, 8)
            exp_size = _make_divisible(input_channel * t, 8)
            layers.append(block(input_channel, exp_size, output_channel, k, s, use_se, use_hs))
            input_channel = output_channel
        self.features = nn.ModuleList(layers)
        # self.classifier = Classfier(output_channel, num_classes, distillation)
        
        self.neck = nn.Sequential(
            nn.Conv2d(
                output_channel,
                256,
                kernel_size=1,
                bias=False,
            ),
            LayerNorm2d(256),
            nn.Conv2d(
                256,
                256,
                kernel_size=3,
                padding=1,
                bias=False,
            ),
            LayerNorm2d(256),
        )

    def forward(self, x):
        # x = self.features(x)
        for f in self.features:
            x = f(x)
        # x = torch.nn.functional.adaptive_avg_pool2d(x, 1).flatten(1)
        x = self.neck(x)
        return x, None

from timm.models import register_model

@register_model
def repvit(pretrained=False, num_classes = 1000, distillation=False, **kwargs):
    """
    Constructs a MobileNetV3-Large model
    """
    cfgs = [
        # k, t, c, SE, HS, s 
        [3,   2,  80, 1, 0, 1],
        [3,   2,  80, 0, 0, 1],
        [3,   2,  80, 1, 0, 1],
        [3,   2,  80, 0, 0, 1],
        [3,   2,  80, 1, 0, 1],
        [3,   2,  80, 0, 0, 1],
        [3,   2,  80, 0, 0, 1],
        [3,   2,  160, 0, 0, 2],
        [3,   2,  160, 1, 0, 1],
        [3,   2,  160, 0, 0, 1],
        [3,   2,  160, 1, 0, 1],
        [3,   2,  160, 0, 0, 1],
        [3,   2,  160, 1, 0, 1],
        [3,   2,  160, 0, 0, 1],
        [3,   2,  160, 0, 0, 1],
        [3,   2,  320, 0, 1, 2],
        [3,   2,  320, 1, 1, 1],
        [3,   2,  320, 0, 1, 1],
        [3,   2,  320, 1, 1, 1],
        [3,   2,  320, 0, 1, 1],
        [3,   2,  320, 1, 1, 1],
        [3,   2,  320, 0, 1, 1],
        [3,   2,  320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 1, 1, 1],
        [3,   2, 320, 0, 1, 1],
        # [3,   2, 320, 1, 1, 1],
        # [3,   2, 320, 0, 1, 1],
        [3,   2, 320, 0, 1, 1],
        [3,   2, 640, 0, 1, 2],
        [3,   2, 640, 1, 1, 1],
        [3,   2, 640, 0, 1, 1],
        # [3,   2, 640, 1, 1, 1],
        # [3,   2, 640, 0, 1, 1]
    ]    
    return RepViT(cfgs, num_classes=num_classes, distillation=distillation)