|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
def check_require_grad(t): |
|
return isinstance(t, torch.Tensor) and t.requires_grad |
|
|
|
|
|
class CheckpointFunction(torch.autograd.Function): |
|
@staticmethod |
|
def forward(ctx, run_function, length, *args): |
|
ctx.run_function = run_function |
|
ctx.input_tensors = list(args[:length]) |
|
ctx.input_params = list(args[length:]) |
|
with torch.no_grad(): |
|
output_tensors = ctx.run_function(*ctx.input_tensors) |
|
return output_tensors |
|
|
|
@staticmethod |
|
def backward(ctx, *output_grads): |
|
for i in range(len(ctx.input_tensors)): |
|
temp = ctx.input_tensors[i] |
|
if check_require_grad(temp): |
|
ctx.input_tensors[i] = temp.detach() |
|
ctx.input_tensors[i].requires_grad = temp.requires_grad |
|
with torch.enable_grad(): |
|
output_tensors = ctx.run_function(*ctx.input_tensors) |
|
to_autograd = list(filter(check_require_grad, ctx.input_tensors)) |
|
output_tensors, output_grads = zip(*filter(lambda t: t[0].requires_grad, zip(output_tensors, output_grads))) |
|
input_grads = torch.autograd.grad(output_tensors, to_autograd + ctx.input_params, output_grads, allow_unused=True) |
|
input_grads = list(input_grads) |
|
for i in range(len(ctx.input_tensors)): |
|
if not check_require_grad(ctx.input_tensors[i]): |
|
input_grads.insert(i, None) |
|
return (None, None) + tuple(input_grads) |
|
|