vierundvi / VISAM /util /checkpoint.py
mart9992's picture
m
2cd560a
raw
history blame
1.82 kB
# ------------------------------------------------------------------------
# Copyright (c) 2022 megvii-research. All Rights Reserved.
# ------------------------------------------------------------------------
# Modified from pytorch-checkpoint (https://github.com/csrhddlam/pytorch-checkpoint)
# ------------------------------------------------------------------------
import torch
def check_require_grad(t):
return isinstance(t, torch.Tensor) and t.requires_grad
class CheckpointFunction(torch.autograd.Function):
@staticmethod
def forward(ctx, run_function, length, *args):
ctx.run_function = run_function
ctx.input_tensors = list(args[:length])
ctx.input_params = list(args[length:])
with torch.no_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
return output_tensors
@staticmethod
def backward(ctx, *output_grads):
for i in range(len(ctx.input_tensors)):
temp = ctx.input_tensors[i]
if check_require_grad(temp):
ctx.input_tensors[i] = temp.detach()
ctx.input_tensors[i].requires_grad = temp.requires_grad
with torch.enable_grad():
output_tensors = ctx.run_function(*ctx.input_tensors)
to_autograd = list(filter(check_require_grad, ctx.input_tensors))
output_tensors, output_grads = zip(*filter(lambda t: t[0].requires_grad, zip(output_tensors, output_grads)))
input_grads = torch.autograd.grad(output_tensors, to_autograd + ctx.input_params, output_grads, allow_unused=True)
input_grads = list(input_grads)
for i in range(len(ctx.input_tensors)):
if not check_require_grad(ctx.input_tensors[i]):
input_grads.insert(i, None)
return (None, None) + tuple(input_grads)