vierundvi / automatic_label_tag2text_demo.py
mart9992's picture
m
2cd560a
raw
history blame
12.9 kB
import argparse
import os
import copy
import numpy as np
import json
import torch
import torchvision
from PIL import Image, ImageDraw, ImageFont
import litellm
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor
import cv2
import numpy as np
import matplotlib.pyplot as plt
# Tag2Text
from ram.models import tag2text_caption
from ram import inference_tag2text
import torchvision.transforms as TS
# ChatGPT or nltk is required when using captions
# import openai
# import nltk
def load_image(image_path):
# load image
image_pil = Image.open(image_path).convert("RGB") # load image
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def generate_caption(raw_image, device):
# unconditional image captioning
if device == "cuda":
inputs = processor(raw_image, return_tensors="pt").to("cuda", torch.float16)
else:
inputs = processor(raw_image, return_tensors="pt")
out = blip_model.generate(**inputs)
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
def generate_tags(caption, split=',', max_tokens=100, model="gpt-3.5-turbo"):
lemma = nltk.wordnet.WordNetLemmatizer()
if openai_key:
prompt = [
{
'role': 'system',
'content': 'Extract the unique nouns in the caption. Remove all the adjectives. ' + \
f'List the nouns in singular form. Split them by "{split} ". ' + \
f'Caption: {caption}.'
}
]
response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
reply = response['choices'][0]['message']['content']
# sometimes return with "noun: xxx, xxx, xxx"
tags = reply.split(':')[-1].strip()
else:
nltk.download(['punkt', 'averaged_perceptron_tagger', 'wordnet'])
tags_list = [word for (word, pos) in nltk.pos_tag(nltk.word_tokenize(caption)) if pos[0] == 'N']
tags_lemma = [lemma.lemmatize(w) for w in tags_list]
tags = ', '.join(map(str, tags_lemma))
return tags
def check_caption(caption, pred_phrases, max_tokens=100, model="gpt-3.5-turbo"):
object_list = [obj.split('(')[0] for obj in pred_phrases]
object_num = []
for obj in set(object_list):
object_num.append(f'{object_list.count(obj)} {obj}')
object_num = ', '.join(object_num)
print(f"Correct object number: {object_num}")
if openai_key:
prompt = [
{
'role': 'system',
'content': 'Revise the number in the caption if it is wrong. ' + \
f'Caption: {caption}. ' + \
f'True object number: {object_num}. ' + \
'Only give the revised caption: '
}
]
response = litellm.completion(model=model, messages=prompt, temperature=0.6, max_tokens=max_tokens)
reply = response['choices'][0]['message']['content']
# sometimes return with "Caption: xxx, xxx, xxx"
caption = reply.split(':')[-1].strip()
return caption
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold,device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
scores = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
scores.append(logit.max().item())
return boxes_filt, torch.Tensor(scores), pred_phrases
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
def save_mask_data(output_dir, caption, mask_list, box_list, label_list):
value = 0 # 0 for background
mask_img = torch.zeros(mask_list.shape[-2:])
for idx, mask in enumerate(mask_list):
mask_img[mask.cpu().numpy()[0] == True] = value + idx + 1
plt.figure(figsize=(10, 10))
plt.imshow(mask_img.numpy())
plt.axis('off')
plt.savefig(os.path.join(output_dir, 'mask.jpg'), bbox_inches="tight", dpi=300, pad_inches=0.0)
json_data = {
'caption': caption,
'mask':[{
'value': value,
'label': 'background'
}]
}
for label, box in zip(label_list, box_list):
value += 1
name, logit = label.split('(')
logit = logit[:-1] # the last is ')'
json_data['mask'].append({
'value': value,
'label': name,
'logit': float(logit),
'box': box.numpy().tolist(),
})
with open(os.path.join(output_dir, 'label.json'), 'w') as f:
json.dump(json_data, f)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded-Segment-Anything Demo", add_help=True)
parser.add_argument("--config", type=str, required=True, help="path to config file")
parser.add_argument(
"--tag2text_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument(
"--grounded_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument(
"--sam_checkpoint", type=str, required=True, help="path to checkpoint file"
)
parser.add_argument("--input_image", type=str, required=True, help="path to image file")
parser.add_argument("--split", default=",", type=str, help="split for text prompt")
parser.add_argument("--openai_key", type=str, help="key for chatgpt")
parser.add_argument("--openai_proxy", default=None, type=str, help="proxy for chatgpt")
parser.add_argument(
"--output_dir", "-o", type=str, default="outputs", required=True, help="output directory"
)
parser.add_argument("--box_threshold", type=float, default=0.25, help="box threshold")
parser.add_argument("--text_threshold", type=float, default=0.2, help="text threshold")
parser.add_argument("--iou_threshold", type=float, default=0.5, help="iou threshold")
parser.add_argument("--device", type=str, default="cpu", help="running on cpu only!, default=False")
args = parser.parse_args()
# cfg
config_file = args.config # change the path of the model config file
tag2text_checkpoint = args.tag2text_checkpoint # change the path of the model
grounded_checkpoint = args.grounded_checkpoint # change the path of the model
sam_checkpoint = args.sam_checkpoint
image_path = args.input_image
split = args.split
openai_key = args.openai_key
openai_proxy = args.openai_proxy
output_dir = args.output_dir
box_threshold = args.box_threshold
text_threshold = args.text_threshold
iou_threshold = args.iou_threshold
device = args.device
# ChatGPT or nltk is required when using captions
# openai.api_key = openai_key
# if openai_proxy:
# openai.proxy = {"http": openai_proxy, "https": openai_proxy}
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil, image = load_image(image_path)
# load model
model = load_model(config_file, grounded_checkpoint, device=device)
# visualize raw image
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# initialize Tag2Text
normalize = TS.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
transform = TS.Compose([
TS.Resize((384, 384)),
TS.ToTensor(), normalize
])
# filter out attributes and action categories which are difficult to grounding
delete_tag_index = []
for i in range(3012, 3429):
delete_tag_index.append(i)
specified_tags='None'
# load model
tag2text_model = tag2text_caption(pretrained=tag2text_checkpoint,
image_size=384,
vit='swin_b',
delete_tag_index=delete_tag_index)
# threshold for tagging
# we reduce the threshold to obtain more tags
tag2text_model.threshold = 0.64
tag2text_model.eval()
tag2text_model = tag2text_model.to(device)
raw_image = image_pil.resize(
(384, 384))
raw_image = transform(raw_image).unsqueeze(0).to(device)
res = inference_tag2text(raw_image , tag2text_model, specified_tags)
# Currently ", " is better for detecting single tags
# while ". " is a little worse in some case
text_prompt=res[0].replace(' |', ',')
caption=res[2]
print(f"Caption: {caption}")
print(f"Tags: {text_prompt}")
# run grounding dino model
boxes_filt, scores, pred_phrases = get_grounding_output(
model, image, text_prompt, box_threshold, text_threshold, device=device
)
# initialize SAM
predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint).to(device))
image = cv2.imread(image_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
predictor.set_image(image)
size = image_pil.size
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
# use NMS to handle overlapped boxes
print(f"Before NMS: {boxes_filt.shape[0]} boxes")
nms_idx = torchvision.ops.nms(boxes_filt, scores, iou_threshold).numpy().tolist()
boxes_filt = boxes_filt[nms_idx]
pred_phrases = [pred_phrases[idx] for idx in nms_idx]
print(f"After NMS: {boxes_filt.shape[0]} boxes")
caption = check_caption(caption, pred_phrases)
print(f"Revise caption with number: {caption}")
transformed_boxes = predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2]).to(device)
masks, _, _ = predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes.to(device),
multimask_output = False,
)
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.numpy(), plt.gca(), label)
plt.title('Tag2Text-Captioning: ' + caption + '\n' + 'Tag2Text-Tagging' + text_prompt + '\n')
plt.axis('off')
plt.savefig(
os.path.join(output_dir, "automatic_label_output.jpg"),
bbox_inches="tight", dpi=300, pad_inches=0.0
)
save_mask_data(output_dir, caption, masks, boxes_filt, pred_phrases)