|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Deformable DETR model and criterion classes. |
|
""" |
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from util import box_ops |
|
from util.misc import (nested_tensor_from_tensor_list, |
|
accuracy, get_world_size, interpolate, |
|
is_dist_avail_and_initialized) |
|
|
|
import copy |
|
|
|
|
|
def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, mean_in_dim1=True): |
|
""" |
|
Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. |
|
Args: |
|
inputs: A float tensor of arbitrary shape. |
|
The predictions for each example. |
|
targets: A float tensor with the same shape as inputs. Stores the binary |
|
classification label for each element in inputs |
|
(0 for the negative class and 1 for the positive class). |
|
alpha: (optional) Weighting factor in range (0,1) to balance |
|
positive vs negative examples. Default = -1 (no weighting). |
|
gamma: Exponent of the modulating factor (1 - p_t) to |
|
balance easy vs hard examples. |
|
Returns: |
|
Loss tensor |
|
""" |
|
prob = inputs.sigmoid() |
|
ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none") |
|
p_t = prob * targets + (1 - prob) * (1 - targets) |
|
loss = ce_loss * ((1 - p_t) ** gamma) |
|
|
|
if alpha >= 0: |
|
alpha_t = alpha * targets + (1 - alpha) * (1 - targets) |
|
loss = alpha_t * loss |
|
if mean_in_dim1: |
|
return loss.mean(1).sum() / num_boxes |
|
else: |
|
return loss.sum() / num_boxes |
|
|
|
|
|
class SetCriterion(nn.Module): |
|
""" This class computes the loss for DETR. |
|
The process happens in two steps: |
|
1) we compute hungarian assignment between ground truth boxes and the outputs of the model |
|
2) we supervise each pair of matched ground-truth / prediction (supervise class and box) |
|
""" |
|
def __init__(self, num_classes, matcher, weight_dict, losses, focal_alpha=0.25): |
|
""" Create the criterion. |
|
Parameters: |
|
num_classes: number of object categories, omitting the special no-object category |
|
matcher: module able to compute a matching between targets and proposals |
|
weight_dict: dict containing as key the names of the losses and as values their relative weight. |
|
losses: list of all the losses to be applied. See get_loss for list of available losses. |
|
focal_alpha: alpha in Focal Loss |
|
""" |
|
super().__init__() |
|
self.num_classes = num_classes |
|
self.matcher = matcher |
|
self.weight_dict = weight_dict |
|
self.losses = losses |
|
self.focal_alpha = focal_alpha |
|
|
|
def loss_labels(self, outputs, targets, indices, num_boxes, log=True): |
|
"""Classification loss (NLL) |
|
targets dicts must contain the key "labels" containing a tensor of dim [nb_target_boxes] |
|
""" |
|
assert 'pred_logits' in outputs |
|
src_logits = outputs['pred_logits'] |
|
|
|
idx = self._get_src_permutation_idx(indices) |
|
target_classes_o = torch.cat([t["labels"][J] for t, (_, J) in zip(targets, indices)]) |
|
target_classes = torch.full(src_logits.shape[:2], self.num_classes, |
|
dtype=torch.int64, device=src_logits.device) |
|
target_classes[idx] = target_classes_o |
|
|
|
target_classes_onehot = torch.zeros([src_logits.shape[0], src_logits.shape[1], src_logits.shape[2] + 1], |
|
dtype=src_logits.dtype, layout=src_logits.layout, device=src_logits.device) |
|
target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) |
|
|
|
target_classes_onehot = target_classes_onehot[:,:,:-1] |
|
loss_ce = sigmoid_focal_loss(src_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * src_logits.shape[1] |
|
losses = {'loss_ce': loss_ce} |
|
|
|
if log: |
|
|
|
losses['class_error'] = 100 - accuracy(src_logits[idx], target_classes_o)[0] |
|
return losses |
|
|
|
@torch.no_grad() |
|
def loss_cardinality(self, outputs, targets, indices, num_boxes): |
|
""" Compute the cardinality error, ie the absolute error in the number of predicted non-empty boxes |
|
This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients |
|
""" |
|
pred_logits = outputs['pred_logits'] |
|
device = pred_logits.device |
|
tgt_lengths = torch.as_tensor([len(v["labels"]) for v in targets], device=device) |
|
|
|
card_pred = (pred_logits.argmax(-1) != pred_logits.shape[-1] - 1).sum(1) |
|
card_err = F.l1_loss(card_pred.float(), tgt_lengths.float()) |
|
losses = {'cardinality_error': card_err} |
|
return losses |
|
|
|
def loss_boxes(self, outputs, targets, indices, num_boxes): |
|
"""Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss |
|
targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] |
|
The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. |
|
""" |
|
assert 'pred_boxes' in outputs |
|
idx = self._get_src_permutation_idx(indices) |
|
src_boxes = outputs['pred_boxes'][idx] |
|
target_boxes = torch.cat([t['boxes'][i] for t, (_, i) in zip(targets, indices)], dim=0) |
|
|
|
loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction='none') |
|
|
|
losses = {} |
|
losses['loss_bbox'] = loss_bbox.sum() / num_boxes |
|
|
|
loss_giou = 1 - torch.diag(box_ops.generalized_box_iou( |
|
box_ops.box_cxcywh_to_xyxy(src_boxes), |
|
box_ops.box_cxcywh_to_xyxy(target_boxes))) |
|
losses['loss_giou'] = loss_giou.sum() / num_boxes |
|
return losses |
|
|
|
def _get_src_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)]) |
|
src_idx = torch.cat([src for (src, _) in indices]) |
|
return batch_idx, src_idx |
|
|
|
def _get_tgt_permutation_idx(self, indices): |
|
|
|
batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)]) |
|
tgt_idx = torch.cat([tgt for (_, tgt) in indices]) |
|
return batch_idx, tgt_idx |
|
|
|
def get_loss(self, loss, outputs, targets, indices, num_boxes, **kwargs): |
|
loss_map = { |
|
'labels': self.loss_labels, |
|
'cardinality': self.loss_cardinality, |
|
'boxes': self.loss_boxes |
|
} |
|
assert loss in loss_map, f'do you really want to compute {loss} loss?' |
|
return loss_map[loss](outputs, targets, indices, num_boxes, **kwargs) |
|
|
|
def forward(self, outputs, targets): |
|
""" This performs the loss computation. |
|
Parameters: |
|
outputs: dict of tensors, see the output specification of the model for the format |
|
targets: list of dicts, such that len(targets) == batch_size. |
|
The expected keys in each dict depends on the losses applied, see each loss' doc |
|
""" |
|
outputs_without_aux = {k: v for k, v in outputs.items() if k != 'aux_outputs' and k != 'enc_outputs'} |
|
|
|
|
|
indices = self.matcher(outputs_without_aux, targets) |
|
|
|
|
|
num_boxes = sum(len(t["labels"]) for t in targets) |
|
num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) |
|
if is_dist_avail_and_initialized(): |
|
torch.distributed.all_reduce(num_boxes) |
|
num_boxes = torch.clamp(num_boxes / get_world_size(), min=1).item() |
|
|
|
|
|
losses = {} |
|
for loss in self.losses: |
|
kwargs = {} |
|
losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes, **kwargs)) |
|
|
|
|
|
if 'aux_outputs' in outputs: |
|
for i, aux_outputs in enumerate(outputs['aux_outputs']): |
|
indices = self.matcher(aux_outputs, targets) |
|
for loss in self.losses: |
|
if loss == 'masks': |
|
|
|
continue |
|
kwargs = {} |
|
if loss == 'labels': |
|
|
|
kwargs['log'] = False |
|
l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_boxes, **kwargs) |
|
l_dict = {k + f'_{i}': v for k, v in l_dict.items()} |
|
losses.update(l_dict) |
|
|
|
if 'enc_outputs' in outputs: |
|
enc_outputs = outputs['enc_outputs'] |
|
bin_targets = copy.deepcopy(targets) |
|
for bt in bin_targets: |
|
bt['labels'] = torch.zeros_like(bt['labels']) |
|
indices = self.matcher(enc_outputs, bin_targets) |
|
for loss in self.losses: |
|
if loss == 'masks': |
|
|
|
continue |
|
kwargs = {} |
|
if loss == 'labels': |
|
|
|
kwargs['log'] = False |
|
l_dict = self.get_loss(loss, enc_outputs, bin_targets, indices, num_boxes, **kwargs) |
|
l_dict = {k + f'_enc': v for k, v in l_dict.items()} |
|
losses.update(l_dict) |
|
|
|
return losses |
|
|
|
|
|
class MLP(nn.Module): |
|
""" Very simple multi-layer perceptron (also called FFN)""" |
|
|
|
def __init__(self, input_dim, hidden_dim, output_dim, num_layers): |
|
super().__init__() |
|
self.num_layers = num_layers |
|
h = [hidden_dim] * (num_layers - 1) |
|
self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) |
|
|
|
def forward(self, x): |
|
for i, layer in enumerate(self.layers): |
|
x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) |
|
return x |
|
|