|
import numpy as np |
|
import cv2 |
|
import random |
|
from config import cfg |
|
import math |
|
from utils.human_models import smpl_x, smpl |
|
from utils.transforms import cam2pixel, transform_joint_to_other_db |
|
from plyfile import PlyData, PlyElement |
|
import torch |
|
|
|
def compute_iou(bbox1, bbox2, center=False): |
|
"""Compute the iou of two boxes. |
|
Parameters |
|
---------- |
|
bbox1, bbox2: list. |
|
The bounding box coordinates: [xmin, ymin, xmax, ymax] or [xcenter, ycenter, w, h]. |
|
center: str, default is 'False'. |
|
The format of coordinate. |
|
center=False: [xmin, ymin, xmax, ymax] |
|
center=True: [xcenter, ycenter, w, h] |
|
Returns |
|
------- |
|
iou: float. |
|
The iou of bbox1 and bbox2. |
|
""" |
|
if center == False: |
|
xmin1, ymin1, xmax1, ymax1 = bbox1 |
|
xmin2, ymin2, xmax2, ymax2 = bbox2 |
|
else: |
|
xmin1, ymin1 = int(bbox1[0] - bbox1[2] / 2.0), int(bbox1[1] - bbox1[3] / 2.0) |
|
xmax1, ymax1 = int(bbox1[0] + bbox1[2] / 2.0), int(bbox1[1] + bbox1[3] / 2.0) |
|
xmin2, ymin2 = int(bbox2[0] - bbox2[2] / 2.0), int(bbox2[1] - bbox2[3] / 2.0) |
|
xmax2, ymax2 = int(bbox2[0] + bbox2[2] / 2.0), int(bbox2[1] + bbox2[3] / 2.0) |
|
|
|
xx1 = np.max([xmin1, xmin2]) |
|
yy1 = np.max([ymin1, ymin2]) |
|
xx2 = np.min([xmax1, xmax2]) |
|
yy2 = np.min([ymax1, ymax2]) |
|
|
|
area1 = (xmax1 - xmin1 + 1) * (ymax1 - ymin1 + 1) |
|
area2 = (xmax2 - xmin2 + 1) * (ymax2 - ymin2 + 1) |
|
|
|
inter_area = (np.max([0, xx2 - xx1])) * (np.max([0, yy2 - yy1])) |
|
|
|
iou = inter_area / (area1 + area2 - inter_area + 1e-6) |
|
return iou |
|
|
|
def load_img(path, order='RGB'): |
|
img = cv2.imread(path, cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) |
|
if not isinstance(img, np.ndarray): |
|
raise IOError("Fail to read %s" % path) |
|
|
|
if order=='RGB': |
|
img = img[:,:,::-1].copy() |
|
|
|
img = img.astype(np.float32) |
|
return img |
|
|
|
def resize_bbox(bbox, scale=1.2): |
|
if isinstance(bbox, list): |
|
x1, y1, x2, y2 = bbox[0], bbox[1], bbox[2], bbox[3] |
|
else: |
|
x1, y1, x2, y2 = bbox |
|
x_center = (x1+x2)/2.0 |
|
y_center = (y1+y2)/2.0 |
|
x_size, y_size = x2-x1, y2-y1 |
|
x1_resize = x_center-x_size/2.0*scale |
|
x2_resize = x_center+x_size/2.0*scale |
|
y1_resize = y_center - y_size / 2.0 * scale |
|
y2_resize = y_center + y_size / 2.0 * scale |
|
bbox[0], bbox[1], bbox[2], bbox[3] = x1_resize, y1_resize, x2_resize, y2_resize |
|
return bbox |
|
|
|
def get_bbox(joint_img, joint_valid, extend_ratio=1.2): |
|
|
|
x_img, y_img = joint_img[:,0], joint_img[:,1] |
|
x_img = x_img[joint_valid==1]; y_img = y_img[joint_valid==1]; |
|
xmin = min(x_img); ymin = min(y_img); xmax = max(x_img); ymax = max(y_img); |
|
|
|
x_center = (xmin+xmax)/2.; width = xmax-xmin; |
|
xmin = x_center - 0.5 * width * extend_ratio |
|
xmax = x_center + 0.5 * width * extend_ratio |
|
|
|
y_center = (ymin+ymax)/2.; height = ymax-ymin; |
|
ymin = y_center - 0.5 * height * extend_ratio |
|
ymax = y_center + 0.5 * height * extend_ratio |
|
|
|
bbox = np.array([xmin, ymin, xmax - xmin, ymax - ymin]).astype(np.float32) |
|
return bbox |
|
|
|
def sanitize_bbox(bbox, img_width, img_height): |
|
x, y, w, h = bbox |
|
x1 = np.max((0, x)) |
|
y1 = np.max((0, y)) |
|
x2 = np.min((img_width - 1, x1 + np.max((0, w - 1)))) |
|
y2 = np.min((img_height - 1, y1 + np.max((0, h - 1)))) |
|
if w*h > 0 and x2 > x1 and y2 > y1: |
|
bbox = np.array([x1, y1, x2-x1, y2-y1]) |
|
else: |
|
bbox = None |
|
|
|
return bbox |
|
|
|
def process_bbox(bbox, img_width, img_height): |
|
bbox = sanitize_bbox(bbox, img_width, img_height) |
|
if bbox is None: |
|
return bbox |
|
|
|
|
|
w = bbox[2] |
|
h = bbox[3] |
|
c_x = bbox[0] + w/2. |
|
c_y = bbox[1] + h/2. |
|
aspect_ratio = cfg.input_img_shape[1]/cfg.input_img_shape[0] |
|
if w > aspect_ratio * h: |
|
h = w / aspect_ratio |
|
elif w < aspect_ratio * h: |
|
w = h * aspect_ratio |
|
bbox[2] = w*1.25 |
|
bbox[3] = h*1.25 |
|
bbox[0] = c_x - bbox[2]/2. |
|
bbox[1] = c_y - bbox[3]/2. |
|
|
|
bbox = bbox.astype(np.float32) |
|
return bbox |
|
|
|
def get_aug_config(): |
|
scale_factor = 0.25 |
|
rot_factor = 30 |
|
color_factor = 0.2 |
|
|
|
scale = np.clip(np.random.randn(), -1.0, 1.0) * scale_factor + 1.0 |
|
rot = np.clip(np.random.randn(), -2.0, |
|
2.0) * rot_factor if random.random() <= 0.6 else 0 |
|
c_up = 1.0 + color_factor |
|
c_low = 1.0 - color_factor |
|
color_scale = np.array([random.uniform(c_low, c_up), random.uniform(c_low, c_up), random.uniform(c_low, c_up)]) |
|
do_flip = random.random() <= 0.5 |
|
|
|
return scale, rot, color_scale, do_flip |
|
|
|
def augmentation(img, bbox, data_split): |
|
if data_split == 'train' and cfg.do_augment: |
|
scale, rot, color_scale, do_flip = get_aug_config() |
|
else: |
|
scale, rot, color_scale, do_flip = 1.0, 0.0, np.array([1,1,1]), False |
|
|
|
img, trans, inv_trans = generate_patch_image(img, bbox, scale, rot, do_flip, cfg.input_img_shape) |
|
img = np.clip(img * color_scale[None,None,:], 0, 255) |
|
return img, trans, inv_trans, rot, do_flip |
|
|
|
def generate_patch_image(cvimg, bbox, scale, rot, do_flip, out_shape): |
|
img = cvimg.copy() |
|
img_height, img_width, img_channels = img.shape |
|
|
|
bb_c_x = float(bbox[0] + 0.5*bbox[2]) |
|
bb_c_y = float(bbox[1] + 0.5*bbox[3]) |
|
bb_width = float(bbox[2]) |
|
bb_height = float(bbox[3]) |
|
|
|
if do_flip: |
|
img = img[:, ::-1, :] |
|
bb_c_x = img_width - bb_c_x - 1 |
|
|
|
trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot) |
|
img_patch = cv2.warpAffine(img, trans, (int(out_shape[1]), int(out_shape[0])), flags=cv2.INTER_LINEAR) |
|
img_patch = img_patch.astype(np.float32) |
|
inv_trans = gen_trans_from_patch_cv(bb_c_x, bb_c_y, bb_width, bb_height, out_shape[1], out_shape[0], scale, rot, inv=True) |
|
|
|
return img_patch, trans, inv_trans |
|
|
|
def rotate_2d(pt_2d, rot_rad): |
|
x = pt_2d[0] |
|
y = pt_2d[1] |
|
sn, cs = np.sin(rot_rad), np.cos(rot_rad) |
|
xx = x * cs - y * sn |
|
yy = x * sn + y * cs |
|
return np.array([xx, yy], dtype=np.float32) |
|
|
|
def gen_trans_from_patch_cv(c_x, c_y, src_width, src_height, dst_width, dst_height, scale, rot, inv=False): |
|
|
|
src_w = src_width * scale |
|
src_h = src_height * scale |
|
src_center = np.array([c_x, c_y], dtype=np.float32) |
|
|
|
|
|
rot_rad = np.pi * rot / 180 |
|
src_downdir = rotate_2d(np.array([0, src_h * 0.5], dtype=np.float32), rot_rad) |
|
src_rightdir = rotate_2d(np.array([src_w * 0.5, 0], dtype=np.float32), rot_rad) |
|
|
|
dst_w = dst_width |
|
dst_h = dst_height |
|
dst_center = np.array([dst_w * 0.5, dst_h * 0.5], dtype=np.float32) |
|
dst_downdir = np.array([0, dst_h * 0.5], dtype=np.float32) |
|
dst_rightdir = np.array([dst_w * 0.5, 0], dtype=np.float32) |
|
|
|
src = np.zeros((3, 2), dtype=np.float32) |
|
src[0, :] = src_center |
|
src[1, :] = src_center + src_downdir |
|
src[2, :] = src_center + src_rightdir |
|
|
|
dst = np.zeros((3, 2), dtype=np.float32) |
|
dst[0, :] = dst_center |
|
dst[1, :] = dst_center + dst_downdir |
|
dst[2, :] = dst_center + dst_rightdir |
|
|
|
if inv: |
|
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src)) |
|
else: |
|
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst)) |
|
|
|
trans = trans.astype(np.float32) |
|
return trans |
|
|
|
def process_db_coord(joint_img, joint_cam, joint_valid, do_flip, img_shape, flip_pairs, img2bb_trans, rot, src_joints_name, |
|
target_joints_name, joint_valid_3d=None, joint_img_global=None, joint_cam_global=None): |
|
joint_img, joint_cam, joint_valid = joint_img.copy(), joint_cam.copy(), joint_valid.copy() |
|
if joint_valid_3d is not None: |
|
joint_valid_3d = joint_valid_3d.copy() |
|
joint_img_global = joint_img_global.copy() |
|
joint_cam_global = joint_cam_global.copy() |
|
|
|
|
|
if do_flip: |
|
joint_cam[:,0] = -joint_cam[:,0] |
|
joint_img[:,0] = img_shape[1] - 1 - joint_img[:,0] |
|
for pair in flip_pairs: |
|
joint_img[pair[0],:], joint_img[pair[1],:] = joint_img[pair[1],:].copy(), joint_img[pair[0],:].copy() |
|
joint_cam[pair[0],:], joint_cam[pair[1],:] = joint_cam[pair[1],:].copy(), joint_cam[pair[0],:].copy() |
|
joint_valid[pair[0],:], joint_valid[pair[1],:] = joint_valid[pair[1],:].copy(), joint_valid[pair[0],:].copy() |
|
if joint_valid_3d is not None: |
|
joint_valid_3d[pair[0],:], joint_valid_3d[pair[1],:] = joint_valid_3d[pair[1],:].copy(), joint_valid_3d[pair[0],:].copy() |
|
|
|
|
|
rot_aug_mat = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], |
|
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], |
|
[0, 0, 1]], dtype=np.float32) |
|
joint_cam = np.dot(rot_aug_mat, joint_cam.transpose(1,0)).transpose(1,0) |
|
|
|
|
|
joint_img_xy1 = np.concatenate((joint_img[:,:2], np.ones_like(joint_img[:,:1])),1) |
|
joint_img[:,:2] = np.dot(img2bb_trans, joint_img_xy1.transpose(1,0)).transpose(1,0) |
|
joint_img[:,0] = joint_img[:,0] / cfg.input_img_shape[1] * cfg.output_hm_shape[2] |
|
joint_img[:,1] = joint_img[:,1] / cfg.input_img_shape[0] * cfg.output_hm_shape[1] |
|
joint_img[:,2] = (joint_img[:,2] / (cfg.body_3d_size / 2) + 1)/2. * cfg.output_hm_shape[0] |
|
|
|
|
|
joint_trunc = joint_valid * ((joint_img[:,0] >= 0) * (joint_img[:,0] < cfg.output_hm_shape[2]) * \ |
|
(joint_img[:,1] >= 0) * (joint_img[:,1] < cfg.output_hm_shape[1]) * \ |
|
(joint_img[:,2] >= 0) * (joint_img[:,2] < cfg.output_hm_shape[0])).reshape(-1,1).astype(np.float32) |
|
|
|
|
|
joint_img = transform_joint_to_other_db(joint_img, src_joints_name, target_joints_name) |
|
joint_cam = transform_joint_to_other_db(joint_cam, src_joints_name, target_joints_name) |
|
joint_valid = transform_joint_to_other_db(joint_valid, src_joints_name, target_joints_name) |
|
joint_trunc = transform_joint_to_other_db(joint_trunc, src_joints_name, target_joints_name) |
|
if joint_valid_3d is not None: |
|
joint_valid_3d = transform_joint_to_other_db(joint_valid_3d, src_joints_name, target_joints_name) |
|
joint_img_global = transform_joint_to_other_db(joint_img_global, src_joints_name, target_joints_name) |
|
joint_cam_global = transform_joint_to_other_db(joint_cam_global, src_joints_name, target_joints_name) |
|
return joint_img, joint_cam, joint_valid, joint_trunc, joint_valid_3d, joint_img_global, joint_cam_global |
|
return joint_img, joint_cam, joint_valid, joint_trunc |
|
|
|
def process_human_model_output(human_model_param, cam_param, do_flip, img_shape, img2bb_trans, rot, human_model_type, flame_betas=None, flame_expression=None): |
|
|
|
if human_model_type == 'smplx': |
|
human_model = smpl_x |
|
rotation_valid = np.ones((smpl_x.orig_joint_num), dtype=np.float32) |
|
coord_valid = np.ones((smpl_x.joint_num), dtype=np.float32) |
|
|
|
root_pose, body_pose, shape, trans = human_model_param['root_pose'], human_model_param['body_pose'], \ |
|
human_model_param['shape'], human_model_param['trans'] |
|
if 'lhand_pose' in human_model_param and human_model_param['lhand_valid']: |
|
lhand_pose = human_model_param['lhand_pose'] |
|
else: |
|
lhand_pose = np.zeros((3 * len(smpl_x.orig_joint_part['lhand'])), dtype=np.float32) |
|
rotation_valid[smpl_x.orig_joint_part['lhand']] = 0 |
|
coord_valid[smpl_x.joint_part['lhand']] = 0 |
|
if 'rhand_pose' in human_model_param and human_model_param['rhand_valid']: |
|
rhand_pose = human_model_param['rhand_pose'] |
|
else: |
|
rhand_pose = np.zeros((3 * len(smpl_x.orig_joint_part['rhand'])), dtype=np.float32) |
|
rotation_valid[smpl_x.orig_joint_part['rhand']] = 0 |
|
coord_valid[smpl_x.joint_part['rhand']] = 0 |
|
if 'jaw_pose' in human_model_param and 'expr' in human_model_param and human_model_param['face_valid']: |
|
jaw_pose = human_model_param['jaw_pose'] |
|
expr = human_model_param['expr'] |
|
expr_valid = True |
|
else: |
|
jaw_pose = np.zeros((3), dtype=np.float32) |
|
expr = np.zeros((smpl_x.expr_code_dim), dtype=np.float32) |
|
rotation_valid[smpl_x.orig_joint_part['face']] = 0 |
|
coord_valid[smpl_x.joint_part['face']] = 0 |
|
expr_valid = False |
|
if 'gender' in human_model_param: |
|
gender = human_model_param['gender'] |
|
else: |
|
gender = 'neutral' |
|
root_pose = torch.FloatTensor(root_pose).view(1, 3) |
|
body_pose = torch.FloatTensor(body_pose).view(-1, 3) |
|
lhand_pose = torch.FloatTensor(lhand_pose).view(-1, 3) |
|
rhand_pose = torch.FloatTensor(rhand_pose).view(-1, 3) |
|
jaw_pose = torch.FloatTensor(jaw_pose).view(-1, 3) |
|
shape = torch.FloatTensor(shape).view(1, -1) |
|
expr = torch.FloatTensor(expr).view(1, -1) |
|
trans = torch.FloatTensor(trans).view(1, -1) |
|
|
|
|
|
|
|
if 'R' in cam_param: |
|
R = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3) |
|
root_pose = root_pose.numpy() |
|
root_pose, _ = cv2.Rodrigues(root_pose) |
|
root_pose, _ = cv2.Rodrigues(np.dot(R, root_pose)) |
|
root_pose = torch.from_numpy(root_pose).view(1, 3) |
|
|
|
|
|
zero_pose = torch.zeros((1, 3)).float() |
|
with torch.no_grad(): |
|
if cfg.use_flame: |
|
flame_betas = human_model_param['new_shape'] |
|
flame_expression = human_model_param['new_expr'] |
|
flame_betas = torch.FloatTensor(flame_betas).view(1, -1) |
|
flame_expression = torch.FloatTensor(flame_expression).view(1, -1) |
|
output = smpl_x.layer[gender](betas=shape, body_pose=body_pose.view(1, -1), global_orient=root_pose, |
|
transl=trans, left_hand_pose=lhand_pose.view(1, -1), |
|
right_hand_pose=rhand_pose.view(1, -1), jaw_pose=jaw_pose.view(1, -1), |
|
leye_pose=zero_pose, reye_pose=zero_pose, expression=expr, |
|
flame_betas=flame_betas, flame_expression=flame_expression) |
|
else: |
|
output = smpl_x.layer[gender](betas=shape, body_pose=body_pose.view(1, -1), global_orient=root_pose, |
|
transl=trans, left_hand_pose=lhand_pose.view(1, -1), |
|
right_hand_pose=rhand_pose.view(1, -1), jaw_pose=jaw_pose.view(1, -1), |
|
leye_pose=zero_pose, reye_pose=zero_pose, expression=expr) |
|
mesh_cam = output.vertices[0].numpy() |
|
joint_cam = output.joints[0].numpy()[smpl_x.joint_idx, :] |
|
|
|
|
|
|
|
if 'R' in cam_param and 't' in cam_param: |
|
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3, 3), np.array(cam_param['t'], |
|
dtype=np.float32).reshape(1, 3) |
|
root_cam = joint_cam[smpl_x.root_joint_idx, None, :] |
|
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t |
|
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1, 0)).transpose(1, 0) + t |
|
|
|
|
|
pose = torch.cat((root_pose, body_pose, lhand_pose, rhand_pose, jaw_pose)) |
|
|
|
|
|
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt']) |
|
joint_cam = joint_cam - joint_cam[smpl_x.root_joint_idx, None, :] |
|
joint_cam[smpl_x.joint_part['lhand'], :] = joint_cam[smpl_x.joint_part['lhand'], :] - joint_cam[ |
|
smpl_x.lwrist_idx, None, |
|
:] |
|
joint_cam[smpl_x.joint_part['rhand'], :] = joint_cam[smpl_x.joint_part['rhand'], :] - joint_cam[ |
|
smpl_x.rwrist_idx, None, |
|
:] |
|
joint_cam[smpl_x.joint_part['face'], :] = joint_cam[smpl_x.joint_part['face'], :] - joint_cam[smpl_x.neck_idx, |
|
None, |
|
:] |
|
joint_img[smpl_x.joint_part['body'], 2] = (joint_cam[smpl_x.joint_part['body'], 2].copy() / ( |
|
cfg.body_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] |
|
joint_img[smpl_x.joint_part['lhand'], 2] = (joint_cam[smpl_x.joint_part['lhand'], 2].copy() / ( |
|
cfg.hand_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] |
|
joint_img[smpl_x.joint_part['rhand'], 2] = (joint_cam[smpl_x.joint_part['rhand'], 2].copy() / ( |
|
cfg.hand_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] |
|
joint_img[smpl_x.joint_part['face'], 2] = (joint_cam[smpl_x.joint_part['face'], 2].copy() / ( |
|
cfg.face_3d_size / 2) + 1) / 2. * cfg.output_hm_shape[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif human_model_type == 'smpl': |
|
human_model = smpl |
|
pose, shape, trans = human_model_param['pose'], human_model_param['shape'], human_model_param['trans'] |
|
if 'gender' in human_model_param: |
|
gender = human_model_param['gender'] |
|
else: |
|
gender = 'neutral' |
|
pose = torch.FloatTensor(pose).view(-1,3) |
|
shape = torch.FloatTensor(shape).view(1,-1); |
|
trans = torch.FloatTensor(trans).view(1,-1) |
|
|
|
|
|
|
|
if 'R' in cam_param: |
|
R = np.array(cam_param['R'], dtype=np.float32).reshape(3,3) |
|
root_pose = pose[smpl.orig_root_joint_idx,:].numpy() |
|
root_pose, _ = cv2.Rodrigues(root_pose) |
|
root_pose, _ = cv2.Rodrigues(np.dot(R,root_pose)) |
|
pose[smpl.orig_root_joint_idx] = torch.from_numpy(root_pose).view(3) |
|
|
|
|
|
root_pose = pose[smpl.orig_root_joint_idx].view(1,3) |
|
body_pose = torch.cat((pose[:smpl.orig_root_joint_idx,:], pose[smpl.orig_root_joint_idx+1:,:])).view(1,-1) |
|
with torch.no_grad(): |
|
output = smpl.layer[gender](betas=shape, body_pose=body_pose, global_orient=root_pose, transl=trans) |
|
mesh_cam = output.vertices[0].numpy() |
|
joint_cam = np.dot(smpl.joint_regressor, mesh_cam) |
|
|
|
|
|
|
|
if 'R' in cam_param and 't' in cam_param: |
|
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3,3), np.array(cam_param['t'], dtype=np.float32).reshape(1,3) |
|
root_cam = joint_cam[smpl.root_joint_idx,None,:] |
|
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1,0)).transpose(1,0) + t |
|
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1,0)).transpose(1,0) + t |
|
|
|
|
|
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt']) |
|
joint_cam = joint_cam - joint_cam[smpl.root_joint_idx,None,:] |
|
joint_img[:,2] = (joint_cam[:,2].copy() / (cfg.body_3d_size / 2) + 1)/2. * cfg.output_hm_shape[0] |
|
|
|
elif human_model_type == 'mano': |
|
human_model = mano |
|
pose, shape, trans = human_model_param['pose'], human_model_param['shape'], human_model_param['trans'] |
|
hand_type = human_model_param['hand_type'] |
|
pose = torch.FloatTensor(pose).view(-1,3) |
|
shape = torch.FloatTensor(shape).view(1,-1); |
|
trans = torch.FloatTensor(trans).view(1,-1) |
|
|
|
|
|
|
|
if 'R' in cam_param: |
|
R = np.array(cam_param['R'], dtype=np.float32).reshape(3,3) |
|
root_pose = pose[mano.orig_root_joint_idx,:].numpy() |
|
root_pose, _ = cv2.Rodrigues(root_pose) |
|
root_pose, _ = cv2.Rodrigues(np.dot(R,root_pose)) |
|
pose[mano.orig_root_joint_idx] = torch.from_numpy(root_pose).view(3) |
|
|
|
|
|
root_pose = pose[mano.orig_root_joint_idx].view(1,3) |
|
hand_pose = torch.cat((pose[:mano.orig_root_joint_idx,:], pose[mano.orig_root_joint_idx+1:,:])).view(1,-1) |
|
with torch.no_grad(): |
|
output = mano.layer[hand_type](betas=shape, hand_pose=hand_pose, global_orient=root_pose, transl=trans) |
|
mesh_cam = output.vertices[0].numpy() |
|
joint_cam = np.dot(mano.joint_regressor, mesh_cam) |
|
|
|
|
|
|
|
if 'R' in cam_param and 't' in cam_param: |
|
R, t = np.array(cam_param['R'], dtype=np.float32).reshape(3,3), np.array(cam_param['t'], dtype=np.float32).reshape(1,3) |
|
root_cam = joint_cam[mano.root_joint_idx,None,:] |
|
joint_cam = joint_cam - root_cam + np.dot(R, root_cam.transpose(1,0)).transpose(1,0) + t |
|
mesh_cam = mesh_cam - root_cam + np.dot(R, root_cam.transpose(1,0)).transpose(1,0) + t |
|
|
|
|
|
joint_img = cam2pixel(joint_cam, cam_param['focal'], cam_param['princpt']) |
|
joint_cam = joint_cam - joint_cam[mano.root_joint_idx,None,:] |
|
joint_img[:,2] = (joint_cam[:,2].copy() / (cfg.hand_3d_size / 2) + 1)/2. * cfg.output_hm_shape[0] |
|
|
|
|
|
mesh_cam_orig = mesh_cam.copy() |
|
|
|
|
|
|
|
|
|
|
|
if do_flip: |
|
joint_cam[:,0] = -joint_cam[:,0] |
|
joint_img[:,0] = img_shape[1] - 1 - joint_img[:,0] |
|
for pair in human_model.flip_pairs: |
|
joint_cam[pair[0], :], joint_cam[pair[1], :] = joint_cam[pair[1], :].copy(), joint_cam[pair[0], :].copy() |
|
joint_img[pair[0], :], joint_img[pair[1], :] = joint_img[pair[1], :].copy(), joint_img[pair[0], :].copy() |
|
if human_model_type == 'smplx': |
|
coord_valid[pair[0]], coord_valid[pair[1]] = coord_valid[pair[1]].copy(), coord_valid[pair[0]].copy() |
|
|
|
|
|
joint_img_xy1 = np.concatenate((joint_img[:,:2], np.ones_like(joint_img[:,0:1])),1) |
|
joint_img[:,:2] = np.dot(img2bb_trans, joint_img_xy1.transpose(1,0)).transpose(1,0)[:,:2] |
|
joint_img[:,0] = joint_img[:,0] / cfg.input_img_shape[1] * cfg.output_hm_shape[2] |
|
joint_img[:,1] = joint_img[:,1] / cfg.input_img_shape[0] * cfg.output_hm_shape[1] |
|
|
|
|
|
joint_trunc = ((joint_img[:,0] >= 0) * (joint_img[:,0] < cfg.output_hm_shape[2]) * \ |
|
(joint_img[:,1] >= 0) * (joint_img[:,1] < cfg.output_hm_shape[1]) * \ |
|
(joint_img[:,2] >= 0) * (joint_img[:,2] < cfg.output_hm_shape[0])).reshape(-1,1).astype(np.float32) |
|
|
|
|
|
rot_aug_mat = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0], |
|
[np.sin(np.deg2rad(-rot)), np.cos(np.deg2rad(-rot)), 0], |
|
[0, 0, 1]], dtype=np.float32) |
|
|
|
joint_cam = np.dot(rot_aug_mat, joint_cam.transpose(1,0)).transpose(1,0) |
|
|
|
|
|
if do_flip: |
|
for pair in human_model.orig_flip_pairs: |
|
pose[pair[0], :], pose[pair[1], :] = pose[pair[1], :].clone(), pose[pair[0], :].clone() |
|
if human_model_type == 'smplx': |
|
rotation_valid[pair[0]], rotation_valid[pair[1]] = rotation_valid[pair[1]].copy(), rotation_valid[pair[0]].copy() |
|
pose[:,1:3] *= -1 |
|
|
|
|
|
pose = pose.numpy() |
|
root_pose = pose[human_model.orig_root_joint_idx,:] |
|
root_pose, _ = cv2.Rodrigues(root_pose) |
|
root_pose, _ = cv2.Rodrigues(np.dot(rot_aug_mat,root_pose)) |
|
pose[human_model.orig_root_joint_idx] = root_pose.reshape(3) |
|
|
|
|
|
shape[(shape.abs() > 3).any(dim=1)] = 0. |
|
shape = shape.numpy().reshape(-1) |
|
|
|
|
|
if human_model_type == 'smplx': |
|
pose = pose.reshape(-1) |
|
expr = expr.numpy().reshape(-1) |
|
return joint_img, joint_cam, joint_trunc, pose, shape, expr, rotation_valid, coord_valid, expr_valid, mesh_cam_orig |
|
elif human_model_type == 'smpl': |
|
pose = pose.reshape(-1) |
|
return joint_img, joint_cam, joint_trunc, pose, shape, mesh_cam_orig |
|
elif human_model_type == 'mano': |
|
pose = pose.reshape(-1) |
|
return joint_img, joint_cam, joint_trunc, pose, shape, mesh_cam_orig |
|
|
|
def get_fitting_error_3D(db_joint, db_joint_from_fit, joint_valid): |
|
|
|
db_joint = db_joint[np.tile(joint_valid,(1,3)) == 1].reshape(-1,3) |
|
db_joint_from_fit = db_joint_from_fit[np.tile(joint_valid,(1,3)) == 1].reshape(-1,3) |
|
|
|
db_joint_from_fit = db_joint_from_fit - np.mean(db_joint_from_fit,0)[None,:] + np.mean(db_joint,0)[None,:] |
|
error = np.sqrt(np.sum((db_joint - db_joint_from_fit)**2,1)).mean() |
|
return error |
|
|
|
def load_obj(file_name): |
|
v = [] |
|
obj_file = open(file_name) |
|
for line in obj_file: |
|
words = line.split(' ') |
|
if words[0] == 'v': |
|
x,y,z = float(words[1]), float(words[2]), float(words[3]) |
|
v.append(np.array([x,y,z])) |
|
return np.stack(v) |
|
|
|
def load_ply(file_name): |
|
plydata = PlyData.read(file_name) |
|
x = plydata['vertex']['x'] |
|
y = plydata['vertex']['y'] |
|
z = plydata['vertex']['z'] |
|
v = np.stack((x,y,z),1) |
|
return v |
|
|
|
|
|
|