dataset_info = dict( dataset_name='animalpose', paper_info=dict( author='Cao, Jinkun and Tang, Hongyang and Fang, Hao-Shu and ' 'Shen, Xiaoyong and Lu, Cewu and Tai, Yu-Wing', title='Cross-Domain Adaptation for Animal Pose Estimation', container='The IEEE International Conference on ' 'Computer Vision (ICCV)', year='2019', homepage='https://sites.google.com/view/animal-pose/', ), keypoint_info={ 0: dict( name='L_Eye', id=0, color=[0, 255, 0], type='upper', swap='R_Eye'), 1: dict( name='R_Eye', id=1, color=[255, 128, 0], type='upper', swap='L_Eye'), 2: dict( name='L_EarBase', id=2, color=[0, 255, 0], type='upper', swap='R_EarBase'), 3: dict( name='R_EarBase', id=3, color=[255, 128, 0], type='upper', swap='L_EarBase'), 4: dict(name='Nose', id=4, color=[51, 153, 255], type='upper', swap=''), 5: dict(name='Throat', id=5, color=[51, 153, 255], type='upper', swap=''), 6: dict( name='TailBase', id=6, color=[51, 153, 255], type='lower', swap=''), 7: dict( name='Withers', id=7, color=[51, 153, 255], type='upper', swap=''), 8: dict( name='L_F_Elbow', id=8, color=[0, 255, 0], type='upper', swap='R_F_Elbow'), 9: dict( name='R_F_Elbow', id=9, color=[255, 128, 0], type='upper', swap='L_F_Elbow'), 10: dict( name='L_B_Elbow', id=10, color=[0, 255, 0], type='lower', swap='R_B_Elbow'), 11: dict( name='R_B_Elbow', id=11, color=[255, 128, 0], type='lower', swap='L_B_Elbow'), 12: dict( name='L_F_Knee', id=12, color=[0, 255, 0], type='upper', swap='R_F_Knee'), 13: dict( name='R_F_Knee', id=13, color=[255, 128, 0], type='upper', swap='L_F_Knee'), 14: dict( name='L_B_Knee', id=14, color=[0, 255, 0], type='lower', swap='R_B_Knee'), 15: dict( name='R_B_Knee', id=15, color=[255, 128, 0], type='lower', swap='L_B_Knee'), 16: dict( name='L_F_Paw', id=16, color=[0, 255, 0], type='upper', swap='R_F_Paw'), 17: dict( name='R_F_Paw', id=17, color=[255, 128, 0], type='upper', swap='L_F_Paw'), 18: dict( name='L_B_Paw', id=18, color=[0, 255, 0], type='lower', swap='R_B_Paw'), 19: dict( name='R_B_Paw', id=19, color=[255, 128, 0], type='lower', swap='L_B_Paw') }, skeleton_info={ 0: dict(link=('L_Eye', 'R_Eye'), id=0, color=[51, 153, 255]), 1: dict(link=('L_Eye', 'L_EarBase'), id=1, color=[0, 255, 0]), 2: dict(link=('R_Eye', 'R_EarBase'), id=2, color=[255, 128, 0]), 3: dict(link=('L_Eye', 'Nose'), id=3, color=[0, 255, 0]), 4: dict(link=('R_Eye', 'Nose'), id=4, color=[255, 128, 0]), 5: dict(link=('Nose', 'Throat'), id=5, color=[51, 153, 255]), 6: dict(link=('Throat', 'Withers'), id=6, color=[51, 153, 255]), 7: dict(link=('TailBase', 'Withers'), id=7, color=[51, 153, 255]), 8: dict(link=('Throat', 'L_F_Elbow'), id=8, color=[0, 255, 0]), 9: dict(link=('L_F_Elbow', 'L_F_Knee'), id=9, color=[0, 255, 0]), 10: dict(link=('L_F_Knee', 'L_F_Paw'), id=10, color=[0, 255, 0]), 11: dict(link=('Throat', 'R_F_Elbow'), id=11, color=[255, 128, 0]), 12: dict(link=('R_F_Elbow', 'R_F_Knee'), id=12, color=[255, 128, 0]), 13: dict(link=('R_F_Knee', 'R_F_Paw'), id=13, color=[255, 128, 0]), 14: dict(link=('TailBase', 'L_B_Elbow'), id=14, color=[0, 255, 0]), 15: dict(link=('L_B_Elbow', 'L_B_Knee'), id=15, color=[0, 255, 0]), 16: dict(link=('L_B_Knee', 'L_B_Paw'), id=16, color=[0, 255, 0]), 17: dict(link=('TailBase', 'R_B_Elbow'), id=17, color=[255, 128, 0]), 18: dict(link=('R_B_Elbow', 'R_B_Knee'), id=18, color=[255, 128, 0]), 19: dict(link=('R_B_Knee', 'R_B_Paw'), id=19, color=[255, 128, 0]) }, joint_weights=[ 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.2, 1.2, 1.2, 1.2, 1.5, 1.5, 1.5, 1.5 ], # Note: The original paper did not provide enough information about # the sigmas. We modified from 'https://github.com/cocodataset/' # 'cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py#L523' sigmas=[ 0.025, 0.025, 0.026, 0.035, 0.035, 0.10, 0.10, 0.10, 0.107, 0.107, 0.107, 0.107, 0.087, 0.087, 0.087, 0.087, 0.089, 0.089, 0.089, 0.089 ])