File size: 2,292 Bytes
007bc54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
base_model: h2oai/h2o-danube-1.8b-chat
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Intel/orca_dpo_pairs
- argilla/distilabel-math-preference-dpo
- Open-Orca/OpenOrca
- OpenAssistant/oasst2
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
- llama-cpp
- gguf-my-repo
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
widget:
- messages:
- role: user
content: Why is drinking water so healthy?
---
# martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF
This model was converted to GGUF format from [`h2oai/h2o-danube-1.8b-chat`](https://huggingface.co/h2oai/h2o-danube-1.8b-chat) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/h2oai/h2o-danube-1.8b-chat) for more details on the model.
## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
```bash
brew install llama.cpp
```
Invoke the llama.cpp server or the CLI.
### CLI:
```bash
llama-cli --hf-repo martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF --hf-file h2o-danube-1.8b-chat-q8_0.gguf -p "The meaning to life and the universe is"
```
### Server:
```bash
llama-server --hf-repo martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF --hf-file h2o-danube-1.8b-chat-q8_0.gguf -c 2048
```
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```
Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF --hf-file h2o-danube-1.8b-chat-q8_0.gguf -p "The meaning to life and the universe is"
```
or
```
./llama-server --hf-repo martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF --hf-file h2o-danube-1.8b-chat-q8_0.gguf -c 2048
```
|