File size: 2,292 Bytes
007bc54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
base_model: h2oai/h2o-danube-1.8b-chat
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Intel/orca_dpo_pairs
- argilla/distilabel-math-preference-dpo
- Open-Orca/OpenOrca
- OpenAssistant/oasst2
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
language:
- en
library_name: transformers
license: apache-2.0
pipeline_tag: text-generation
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
- llama-cpp
- gguf-my-repo
thumbnail: https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
widget:
- messages:
  - role: user
    content: Why is drinking water so healthy?
---

# martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF
This model was converted to GGUF format from [`h2oai/h2o-danube-1.8b-chat`](https://huggingface.co/h2oai/h2o-danube-1.8b-chat) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/h2oai/h2o-danube-1.8b-chat) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF --hf-file h2o-danube-1.8b-chat-q8_0.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF --hf-file h2o-danube-1.8b-chat-q8_0.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF --hf-file h2o-danube-1.8b-chat-q8_0.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo martintmv/h2o-danube-1.8b-chat-Q8_0-GGUF --hf-file h2o-danube-1.8b-chat-q8_0.gguf -c 2048
```