File size: 1,939 Bytes
e1d8260 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
license: mit
base_model: neuralmind/bert-base-portuguese-cased
tags:
- generated_from_trainer
metrics:
- precision
- recall
- accuracy
- f1
model-index:
- name: oracle_class_vert_v3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/generation_jur/oracle_text_classification/runs/fi2ble5z)
# oracle_class_vert_v3
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5665
- Precision: 0.8326
- Recall: 0.8336
- Accuracy: 0.8477
- F1: 0.8310
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | Accuracy | F1 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:--------:|:------:|
| 0.5484 | 1.4589 | 550 | 0.5911 | 0.8063 | 0.8028 | 0.8308 | 0.8010 |
| 0.3253 | 2.9178 | 1100 | 0.5665 | 0.8326 | 0.8336 | 0.8477 | 0.8310 |
### Framework versions
- Transformers 4.43.1
- Pytorch 2.2.0
- Datasets 2.20.0
- Tokenizers 0.19.1
|