matiusX commited on
Commit
bd5efff
1 Parent(s): 42b8e52

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -60
README.md CHANGED
@@ -1,29 +1,29 @@
1
  ---
2
  base_model: unsloth/llama-3-8b-bnb-4bit
3
  library_name: peft
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
 
 
17
 
18
 
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
@@ -35,43 +35,82 @@ library_name: peft
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
 
46
  ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
@@ -92,7 +131,11 @@ Use the code below to get started with the model.
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
 
 
 
 
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
@@ -138,18 +181,6 @@ Use the code below to get started with the model.
138
 
139
  [More Information Needed]
140
 
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
  ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
@@ -176,27 +207,15 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
176
 
177
  [More Information Needed]
178
 
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
 
189
  ## More Information [optional]
190
 
191
  [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
200
  ### Framework versions
201
 
202
  - PEFT 0.12.0
 
1
  ---
2
  base_model: unsloth/llama-3-8b-bnb-4bit
3
  library_name: peft
4
+ license: mit
5
+ datasets:
6
+ - matiusX/legislacao-ufam
7
+ language:
8
+ - pt
9
+ - en
10
  ---
11
 
12
+ # Model Details
 
 
 
 
 
 
13
 
14
  ### Model Description
15
 
16
+ This model is a fine-tuned version of LLaMA 3 utilizing the Quantized Low-Rank Adaptation (QLoRA) technique.
17
+ It is designed to answer questions related to the academic legislation of the Universidade Federal do Amazonas (UFAM).
18
+ The training process involved generating a synthetic dataset of questions and answers based on the legislation,
19
+ which includes various resolutions and norms provided by UFAM.
20
 
21
 
22
+ - **Developed by:** Matheus dos Santos Palheta
23
+ - **Model type:** More Information Needed
24
+ - **Language(s) (NLP):** Portuguese, english
25
+ - **License:** MIT
26
+ - **Finetuned from model:** unsloth/llama-3-8b-bnb-4bit
 
 
 
27
 
28
  ### Model Sources [optional]
29
 
 
35
 
36
  ## Uses
37
 
38
+ This model is intended for use by anyone with questions about UFAM's legislation. It is especially designed for students, professors, and administrative staff who need quick and accurate answers regarding academic policies and regulations. The model aims to support these groups by providing reliable information, thereby facilitating a better understanding of the rules and guidelines that govern their academic and professional activities at UFAM.
 
39
  ### Direct Use
40
 
41
+ This model can be directly used to answer questions regarding UFAM's academic legislation without additional fine-tuning.
 
 
42
 
43
  ### Downstream Use [optional]
44
 
45
+ The model can be integrated into larger ecosystems or applications, particularly those focusing on academic information systems,
46
+ legal information retrieval, or automated student support systems from UFAM.
 
47
 
48
  ### Out-of-Scope Use
49
 
50
+ This model is not suitable for general-purpose question answering beyond the scope of UFAM's academic legislation.
51
+ It should not be used for legal advice or any critical decision-making processes outside its trained domain.
 
52
 
53
  ## Bias, Risks, and Limitations
54
 
55
+ While the model has been fine-tuned for accuracy in the context of UFAM's legislation, it may still exhibit biases present in the training data.
56
+ Additionally, the model's performance is constrained by the quality and comprehensiveness of the synthetic dataset generated.
 
57
 
58
  ### Recommendations
59
 
 
 
60
  Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
61
 
62
  ## How to Get Started with the Model
63
 
64
  Use the code below to get started with the model.
65
 
66
+ ```python
67
+ !pip install "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git"
68
+ !pip install --no-deps "xformers<0.0.27" "trl<0.9.0" peft accelerate bitsandbytes
69
+
70
+ from datasets import load_dataset
71
+ from datasets import Dataset
72
+ import pandas as pd
73
+
74
+ from unsloth import FastLanguageModel
75
+ import torch
76
+ max_seq_length = 2048
77
+ dtype = None
78
+ load_in_4bit = True
79
+ model, tokenizer = FastLanguageModel.from_pretrained(
80
+ model_name = "matiusX/lamma-legis-ufam",
81
+ max_seq_length = max_seq_length,
82
+ dtype = dtype,
83
+ load_in_4bit = load_in_4bit,
84
+ )
85
+ FastLanguageModel.for_inference(model)
86
+
87
+ prompt = """Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
88
+
89
+ ### Instruction:
90
+ {}
91
+
92
+ ### Input:
93
+ {}
94
+
95
+ ### Response:
96
+ {}"""
97
+
98
+ inputs = tokenizer(
99
+ [
100
+ prompt.format(
101
+ contexto, # contexto
102
+ pergunta, # pergunta
103
+ "", # resposta - deixar em branco
104
+ )
105
+ ], return_tensors = "pt").to("cuda")
106
+
107
+ outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
108
+ tokenizer.batch_decode(outputs)
109
+
110
+ from transformers import TextStreamer
111
+ text_streamer = TextStreamer(tokenizer, skip_prompt=True)
112
+ _ = model.generate(**inputs, streamer = text_streamer, max_new_tokens = 128)
113
+ ```
114
 
115
  ## Training Details
116
 
 
131
 
132
  #### Training Hyperparameters
133
 
134
+ - **Training regime:** Mixed precision (fp16)
135
+ - **LoRA configuration:**
136
+ - **Alpha:** 16
137
+ - **Dropout:** 0
138
+ - **Target modules:** down_proj, up_proj, q_proj, gate_proj, v_proj, o_proj, k_proj
139
 
140
  #### Speeds, Sizes, Times [optional]
141
 
 
181
 
182
  [More Information Needed]
183
 
 
 
 
 
 
 
 
 
 
 
 
 
184
  ## Technical Specifications [optional]
185
 
186
  ### Model Architecture and Objective
 
207
 
208
  [More Information Needed]
209
 
 
 
 
 
 
 
 
 
 
210
 
211
  ## More Information [optional]
212
 
213
  [More Information Needed]
214
 
 
 
 
 
215
  ## Model Card Contact
216
 
217
218
+
219
  ### Framework versions
220
 
221
  - PEFT 0.12.0