Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -1
- ppo-LunarLander-v2/data +25 -24
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +7 -7
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 257.46 +/- 23.30
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb26fab75e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb26fab7670>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb26fab7700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb26fab7790>", "_build": "<function ActorCriticPolicy._build at 0x7fb26fab7820>", "forward": "<function ActorCriticPolicy.forward at 0x7fb26fab78b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb26fab7940>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb26fab79d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb26fab7a60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb26fab7af0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb26fab7b80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb26faaee10>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 500736, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670444502940374729, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKafzb0kuiI/Gh8zPVYvZr5yo7A8v7W2vAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0014719999999999178, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMInfS+8bUtRMCUhpRSlIwBbJRNBwGMAXSUR0CT1ty57PY4dX2UKGgGaAloD0MIDI/9LJanbkCUhpRSlGgVTS4CaBZHQJPcvG1hLGt1fZQoaAZoCWgPQwjNdRppqUpsQJSGlFKUaBVNdwFoFkdAk9+RKUVzqHV9lChoBmgJaA9DCK6cvTPa1EBAlIaUUpRoFU0JAWgWR0CT4WFc6eXidX2UKGgGaAloD0MI2uOFdHiQNMCUhpRSlGgVTQQBaBZHQJPkZy7wrlN1fZQoaAZoCWgPQwjwh5//ngVrQJSGlFKUaBVNVQFoFkdAk+bGZ/kNnXV9lChoBmgJaA9DCNL7xtce+W1AlIaUUpRoFU1LAWgWR0CT6QnYxtYTdX2UKGgGaAloD0MIvlDAdjD0bECUhpRSlGgVTZ8BaBZHQJPthHFxXGR1fZQoaAZoCWgPQwjMsieBzfNrQJSGlFKUaBVNWAFoFkdAk+/0+s5n13V9lChoBmgJaA9DCMhhMH8F8WpAlIaUUpRoFU3YAWgWR0CT866tknTidX2UKGgGaAloD0MIFHXmHpLjbUCUhpRSlGgVTYsBaBZHQJP4JzQu27Z1fZQoaAZoCWgPQwhW8rG7QLtDwJSGlFKUaBVNPwFoFkdAk/oyEcsDn3V9lChoBmgJaA9DCF/uk6MAuSfAlIaUUpRoFU0yAWgWR0CT/E+WGATadX2UKGgGaAloD0MIo+nsZPDma0CUhpRSlGgVTXEBaBZHQJQAZ4fOlft1fZQoaAZoCWgPQwixTSoa6/lvQJSGlFKUaBVNYwFoFkdAlALZUxVQynV9lChoBmgJaA9DCOG3IcZr42ZAlIaUUpRoFU3dA2gWR0CUDHwfhddFdX2UKGgGaAloD0MIWfymsFJhGkCUhpRSlGgVS+9oFkdAlA3vJq7AcnV9lChoBmgJaA9DCOwuUFJgMRPAlIaUUpRoFUvdaBZHQJQQrGff4yp1fZQoaAZoCWgPQwg3GVWGcQcVQJSGlFKUaBVNHAFoFkdAlBKi3solU3V9lChoBmgJaA9DCF2j5UCP7mlAlIaUUpRoFU1+AmgWR0CUF0ITGo73dX2UKGgGaAloD0MITkLpCyFGa0CUhpRSlGgVTVEBaBZHQJQbDH+6y0N1fZQoaAZoCWgPQwjb/SrAdyswwJSGlFKUaBVL32gWR0CUHHSi/O+qdX2UKGgGaAloD0MIqFfKMsQhFECUhpRSlGgVTR0BaBZHQJQeU5Qxesx1fZQoaAZoCWgPQwjVsUrpmfY5wJSGlFKUaBVNFQFoFkdAlCGFwT/Q0HV9lChoBmgJaA9DCA3k2eVbPwLAlIaUUpRoFU0gAWgWR0CUI2mKZUkwdX2UKGgGaAloD0MImrM+5ZjsOcCUhpRSlGgVTRkBaBZHQJQlOS/0ulJ1fZQoaAZoCWgPQwgCDTZ1HjVvQJSGlFKUaBVNagFoFkdAlCeoePq9oXV9lChoBmgJaA9DCOsAiLt6tR5AlIaUUpRoFU0uAWgWR0CUKv6XBxgidX2UKGgGaAloD0MI2dDN/sAgakCUhpRSlGgVTW4BaBZHQJQtgEcKgI11fZQoaAZoCWgPQwgMsmX5OiZvQJSGlFKUaBVNUAFoFkdAlDB6jWTX8XV9lChoBmgJaA9DCPWc9L7x0W9AlIaUUpRoFU0mAWgWR0CUNP2cawUydX2UKGgGaAloD0MITP4nf3dgbECUhpRSlGgVTWcBaBZHQJQ4pCu2ZzB1fZQoaAZoCWgPQwjRBfUt8/9uQJSGlFKUaBVNVwFoFkdAlDw7ulXRxHV9lChoBmgJaA9DCJOQSNv4UydAlIaUUpRoFUvNaBZHQJRAIgyM1j11fZQoaAZoCWgPQwg/NsmP+JUZwJSGlFKUaBVL/2gWR0CUQdFi8WbgdX2UKGgGaAloD0MIEHS0qiVsakCUhpRSlGgVTW0BaBZHQJREknRb8m91fZQoaAZoCWgPQwjRyyiWGxJwQJSGlFKUaBVNkgFoFkdAlEi9weeWfXV9lChoBmgJaA9DCE4JiEm4gk5AlIaUUpRoFU3oA2gWR0CUUqvlU6xPdX2UKGgGaAloD0MIZTbIJKPfbUCUhpRSlGgVTTQCaBZHQJRXJi7TUiJ1fZQoaAZoCWgPQwhwe4LEdps+wJSGlFKUaBVNJAFoFkdAlFj7xd6cAnV9lChoBmgJaA9DCPMcke9SijXAlIaUUpRoFU1NAWgWR0CUXIsOXmeUdX2UKGgGaAloD0MIX5ULlX+FPMCUhpRSlGgVTQ8BaBZHQJReMCHRCyB1fZQoaAZoCWgPQwjjNhrA2y9uQJSGlFKUaBVNxQFoFkdAlGHX8XN1Q3V9lChoBmgJaA9DCPRr66f/329AlIaUUpRoFU1SAWgWR0CUZWaUzKs/dX2UKGgGaAloD0MIKa4q+674LUCUhpRSlGgVTRQBaBZHQJRnKRMewLV1fZQoaAZoCWgPQwh/+PnvwfBuQJSGlFKUaBVNVQFoFkdAlGmNC7btZ3V9lChoBmgJaA9DCH78pUX9ZHBAlIaUUpRoFU1iAWgWR0CUbV3kxREXdX2UKGgGaAloD0MI3GRUGUa1bECUhpRSlGgVTQICaBZHQJRxLA+IM0B1fZQoaAZoCWgPQwiFQ2/x8NhtQJSGlFKUaBVNiQFoFkdAlHVJv5xionV9lChoBmgJaA9DCMNmgAsyNHFAlIaUUpRoFU1fAWgWR0CUd7pNsWO7dX2UKGgGaAloD0MIN+Fembfxa0CUhpRSlGgVTWcBaBZHQJR6OkWRA8l1fZQoaAZoCWgPQwiu8C4XcbJuQJSGlFKUaBVNUQFoFkdAlH3qRZEDyXV9lChoBmgJaA9DCN8ZbVUSsSzAlIaUUpRoFUvwaBZHQJR/VYEGJN11fZQoaAZoCWgPQwjl1M4w9Q9xQJSGlFKUaBVNzQFoFkdAlIL3bM5fdHV9lChoBmgJaA9DCEmgwabO4UFAlIaUUpRoFU0DAWgWR0CUhf7QLNOedX2UKGgGaAloD0MIcJf9utNDQ0CUhpRSlGgVTegDaBZHQJSQY+u/1xt1fZQoaAZoCWgPQwiuSbclcqFXQJSGlFKUaBVN6ANoFkdAlJg0dvKlpHV9lChoBmgJaA9DCDtzDwlfCm5AlIaUUpRoFU3dAWgWR0CUnPzcRDkVdX2UKGgGaAloD0MIMgQAx94FcECUhpRSlGgVTfUCaBZHQJSjdYoy9El1fZQoaAZoCWgPQwhwQEtXsCFCwJSGlFKUaBVLxmgWR0CUpKREnb7CdX2UKGgGaAloD0MIgjY5fFLVbkCUhpRSlGgVTWABaBZHQJSnOLm6oVF1fZQoaAZoCWgPQwiitaLNcXZrQJSGlFKUaBVNfgFoFkdAlKuNDUmUn3V9lChoBmgJaA9DCPGD86ljy2dAlIaUUpRoFU2KAWgWR0CUrjEdNnGsdX2UKGgGaAloD0MIbmx2pPpxWUCUhpRSlGgVTegDaBZHQJS4hihFmWd1fZQoaAZoCWgPQwiELXb7rDBFwJSGlFKUaBVNIAFoFkdAlLpPkBCD3HV9lChoBmgJaA9DCHZvRWICEGpAlIaUUpRoFU2zAWgWR0CUvvM6BAfMdX2UKGgGaAloD0MIDk5Ev7aiNUCUhpRSlGgVTR0BaBZHQJTAuDQJHAh1fZQoaAZoCWgPQwjF5XgFors0wJSGlFKUaBVNNQFoFkdAlMLKvV3EAHV9lChoBmgJaA9DCA3gLZAgvGtAlIaUUpRoFU2SAWgWR0CUxxWJaaCudX2UKGgGaAloD0MIYto391dPYkCUhpRSlGgVTZ0BaBZHQJTKCbayrxR1fZQoaAZoCWgPQwhm3NRAM1VwQJSGlFKUaBVNzAFoFkdAlM3QR9PUKHV9lChoBmgJaA9DCKJD4Egg821AlIaUUpRoFU3TAWgWR0CU0rnP3SKFdX2UKGgGaAloD0MIVyO70rK4aUCUhpRSlGgVTb4BaBZHQJTWG9bor4F1fZQoaAZoCWgPQwjMQ6Z8iHRxQJSGlFKUaBVN7AFoFkdAlNzO3x4IKXV9lChoBmgJaA9DCK37x0J0/DbAlIaUUpRoFU2RAWgWR0CU4Iybx3FDdX2UKGgGaAloD0MIuCOcFrx3UsCUhpRSlGgVTccBaBZHQJTnD7zkIX11fZQoaAZoCWgPQwh0m3CvTPFjQJSGlFKUaBVN9wJoFkdAlO9XMY/FBXV9lChoBmgJaA9DCPm7d9QYKW5AlIaUUpRoFU2KAWgWR0CU861TR6WxdX2UKGgGaAloD0MI6dFUT+YzaUCUhpRSlGgVTaYBaBZHQJT2xNBWxQl1fZQoaAZoCWgPQwgdqinJOhBZQJSGlFKUaBVN6ANoFkdAlP/BSP2f03V9lChoBmgJaA9DCOcdp+hINiZAlIaUUpRoFU0hAWgWR0CVAxE/jbSJdX2UKGgGaAloD0MIQ6z+CMNOSsCUhpRSlGgVTSUBaBZHQJUE/Zbpu/F1fZQoaAZoCWgPQwiN1Hsqp7NlQJSGlFKUaBVNgAJoFkdAlQplFDv3J3V9lChoBmgJaA9DCJdV2AxwqWxAlIaUUpRoFU2hAWgWR0CVDsovSMLndX2UKGgGaAloD0MIJ/p8lFGbcUCUhpRSlGgVTTABaBZHQJUQ1vHcUM51fZQoaAZoCWgPQwjPTgZHyZM6wJSGlFKUaBVNKwFoFkdAlRLSIYWLxnV9lChoBmgJaA9DCDIcz2dAbW1AlIaUUpRoFU2LAWgWR0CVFwdiDujRdX2UKGgGaAloD0MIvFtZojMpbUCUhpRSlGgVTaABaBZHQJUZ7JRwZO11fZQoaAZoCWgPQwjaA63AEORnQJSGlFKUaBVNeQFoFkdAlR4Gs3hn8XV9lChoBmgJaA9DCNtv7UTJo2xAlIaUUpRoFU19AWgWR0CVINS+QEIPdX2UKGgGaAloD0MI6PnTRvXPbECUhpRSlGgVTZMBaBZHQJUjfXYlIEt1fZQoaAZoCWgPQwhfYizTr2ltQJSGlFKUaBVNGwNoFkdAlSrnscABDHV9lChoBmgJaA9DCF/Tg4KSCXBAlIaUUpRoFU10AWgWR0CVLV9lVcUudX2UKGgGaAloD0MIi269pgehNUCUhpRSlGgVTSQBaBZHQJUwq+tbLU11fZQoaAZoCWgPQwi78e7IWPlYQJSGlFKUaBVN6ANoFkdAlTmVd9lVcXV9lChoBmgJaA9DCDfeHRkreW1AlIaUUpRoFU1IAWgWR0CVO9fDDTBqdX2UKGgGaAloD0MIGHlZEwvQMUCUhpRSlGgVTUwBaBZHQJU+ED2alUJ1fZQoaAZoCWgPQwguPC8VG2McQJSGlFKUaBVNMgFoFkdAlUGQYcebNXV9lChoBmgJaA9DCIRkARO4sG1AlIaUUpRoFU1bAWgWR0CVQ8uLrHENdX2UKGgGaAloD0MInBpoPueEbUCUhpRSlGgVTVwBaBZHQJVGRljEvTR1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1956, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.15", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa81c515b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa81c515c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa81c515ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa81c515d30>", "_build": "<function ActorCriticPolicy._build at 0x7fa81c515dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa81c515e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa81c515ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa81c515f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa81c517040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa81c5170d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa81c517160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa81c5171f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa81c5942d0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675547832272716781, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOtrz0hyww+C39ZPNt5jb4Lq1Q9Bf4oPAAAAAAAAAAAM0WrPHvykrpy+tA3TRLEMtfGw7ia6fG2AACAPwAAgD8guQU+5/FOPzUI7LwKRuC+7eUAPq61FToAAAAAAAAAANhZiL74u5E/KnAHv8YqHr98CIS+9WBpvQAAAAAAAAAA0CSMPi2aXb1Tf4s7y3Y1uslyv74FmQG7AACAPwAAgD+AfGM9e5yXuvg/ozXtgpgw4gcDO4qdu7QAAIA/AACAPxP1H74QQJk/RGQpvyV5Lb8KCfm967ZcvgAAAAAAAAAAmgZKPtZtrz+CyCQ/8FvfvnUsVD7mNoU+AAAAAAAAAAAzzCI9V451PNawwL20kii+p+4GvahqzTwAAAAAAAAAAM1YgLvt7RU+kIlhvUmMfL5BoTQ7hpG+vAAAAAAAAAAATZ9OPda9sT4/uxQ9csCmvo9/TTsKX8u8AAAAAAAAAABAjic+qbKzP3Za2D7RK/O+L6QbPt4sRz4AAAAAAAAAAAM1jb6TW4k+a9bUPnPopb4WpM+9pr+sPQAAAAAAAAAAmkH1u5QJ3zuJHbA92RqAvq7VTb2Imma9AAAAAAAAAADAEaE9KUh3ur/zKblNobOzPac6uz46RDgAAAAAAAAAAJqmnb3NnYo/roCfvswaCb+l4fC9fe79vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINIP4wE6NckCUhpRSlIwBbJRL7owBdJRHQJL68XuVopR1fZQoaAZoCWgPQwjEr1jDxXlzQJSGlFKUaBVL+WgWR0CS+vhTwUg0dX2UKGgGaAloD0MIrkoi+6DPcUCUhpRSlGgVS+1oFkdAkvwQyM1jzHV9lChoBmgJaA9DCOD0Lt4PnnFAlIaUUpRoFU0wAWgWR0CS/E48lolEdX2UKGgGaAloD0MIZ3+g3PaWcECUhpRSlGgVTQMBaBZHQJL8wNgBtDV1fZQoaAZoCWgPQwj9hLNby0JyQJSGlFKUaBVL3WgWR0CS/W8GLUCrdX2UKGgGaAloD0MIuRrZlRaIcUCUhpRSlGgVTQMBaBZHQJL9bZsbedl1fZQoaAZoCWgPQwhdF35wvpluQJSGlFKUaBVNGQFoFkdAkv2S/KyOaXV9lChoBmgJaA9DCMcuUb21HW1AlIaUUpRoFUv6aBZHQJL+C7btZ3d1fZQoaAZoCWgPQwj8NsR4jaBwQJSGlFKUaBVL22gWR0CS/19roGILdX2UKGgGaAloD0MIie5Z12gBcUCUhpRSlGgVS/RoFkdAkv/i8jAzpHV9lChoBmgJaA9DCC46WWq9KG5AlIaUUpRoFUvsaBZHQJL/6/j81oB1fZQoaAZoCWgPQwgsvMtFPDtxQJSGlFKUaBVL5GgWR0CTAAemelKsdX2UKGgGaAloD0MIsyRATS09c0CUhpRSlGgVS/5oFkdAkwCj5j6N2nV9lChoBmgJaA9DCDgteNEX6XJAlIaUUpRoFU1CAWgWR0CTAKgx8D0UdX2UKGgGaAloD0MIDp4JTRIUb0CUhpRSlGgVS+VoFkdAkwGDwhGH6HV9lChoBmgJaA9DCGkdVU3QF3FAlIaUUpRoFUvkaBZHQJMCcGHHmzV1fZQoaAZoCWgPQwg/jubIiltyQJSGlFKUaBVL52gWR0CTA0AnlXA/dX2UKGgGaAloD0MIoUrNHijXckCUhpRSlGgVS9JoFkdAkwP79MsYmHV9lChoBmgJaA9DCEMAcOyZl3FAlIaUUpRoFU1CAWgWR0CTBEY/FBIGdX2UKGgGaAloD0MIm3YxzbRZcUCUhpRSlGgVS/xoFkdAkwScTrVvuXV9lChoBmgJaA9DCE3aVN1jwnNAlIaUUpRoFU0jAWgWR0CTBKlA/s3RdX2UKGgGaAloD0MIYabtX1mxbUCUhpRSlGgVS/poFkdAkwSyn1nM+3V9lChoBmgJaA9DCHMrhNXYXHBAlIaUUpRoFU0XAWgWR0CTBVA/9pAVdX2UKGgGaAloD0MIHAjJAibocUCUhpRSlGgVS9RoFkdAkwYGkSElFHV9lChoBmgJaA9DCAcKvJPPMnJAlIaUUpRoFU0HAWgWR0CTBtv0yxiYdX2UKGgGaAloD0MIEXFzKpk3cECUhpRSlGgVS+VoFkdAkwcyVjZtenV9lChoBmgJaA9DCF6iemtgx3BAlIaUUpRoFU0HAWgWR0CTB16XBxgidX2UKGgGaAloD0MIFlETfb7bckCUhpRSlGgVTSoBaBZHQJMIWozeoDR1fZQoaAZoCWgPQwgdWI6QAZpxQJSGlFKUaBVL+WgWR0CTCLTfBN21dX2UKGgGaAloD0MIW5iFdo47cECUhpRSlGgVS+toFkdAkwlNSl3yJHV9lChoBmgJaA9DCLsO1ZTkBG9AlIaUUpRoFUvZaBZHQJMJkc5sCT51fZQoaAZoCWgPQwi+UMB2MKhHQJSGlFKUaBVN6ANoFkdAkwoDjBEa2nV9lChoBmgJaA9DCGGKcmm8jHJAlIaUUpRoFU1XAWgWR0CTCpbiZOSGdX2UKGgGaAloD0MIL/fJUYBwS0CUhpRSlGgVS9NoFkdAkwq3nhbW3HV9lChoBmgJaA9DCAzJycStN25AlIaUUpRoFUvyaBZHQJMLNxEORT11fZQoaAZoCWgPQwgOL4hIjYRyQJSGlFKUaBVL22gWR0CTC5HgxagVdX2UKGgGaAloD0MItW6D2u/OcECUhpRSlGgVS91oFkdAkwxZQLux8nV9lChoBmgJaA9DCCE/G7luV3BAlIaUUpRoFU0cAWgWR0CTDJ7K7qY7dX2UKGgGaAloD0MI547+lystcECUhpRSlGgVS+toFkdAkw2M67ulXXV9lChoBmgJaA9DCF3Aywxb0XNAlIaUUpRoFU1MAWgWR0CTIUrYoRZmdX2UKGgGaAloD0MITfbP04DKcUCUhpRSlGgVTREBaBZHQJMi0JBw++x1fZQoaAZoCWgPQwgLRbqfkw5xQJSGlFKUaBVL7GgWR0CTIvT2FnIydX2UKGgGaAloD0MIA7LXuz/PcECUhpRSlGgVS9poFkdAkySNZJTVD3V9lChoBmgJaA9DCPqXpDLFx25AlIaUUpRoFUv2aBZHQJMk2/h2nsN1fZQoaAZoCWgPQwhzZOWXAdhyQJSGlFKUaBVNOAFoFkdAkyTq55JK8XV9lChoBmgJaA9DCNvdA3QfTXFAlIaUUpRoFUvwaBZHQJMk9kkKNQ11fZQoaAZoCWgPQwgVVb/SecRwQJSGlFKUaBVL52gWR0CTJikhA4XGdX2UKGgGaAloD0MI1zBD40nnc0CUhpRSlGgVTS4BaBZHQJMmXqHGjsV1fZQoaAZoCWgPQwjABdmyfM1xQJSGlFKUaBVL3GgWR0CTJwNBF/hEdX2UKGgGaAloD0MIYkok0YtccECUhpRSlGgVTQ0BaBZHQJMnbhrFfiR1fZQoaAZoCWgPQwiQ3Jp0mz9xQJSGlFKUaBVL/2gWR0CTJ8sMy8BddX2UKGgGaAloD0MIfa62Yj/tcECUhpRSlGgVS/ZoFkdAkykPWDpTuXV9lChoBmgJaA9DCDNPrimQKW1AlIaUUpRoFU0EAWgWR0CTKg3/giu/dX2UKGgGaAloD0MIogxVMZXIb0CUhpRSlGgVS+ZoFkdAkyo44Qz1snV9lChoBmgJaA9DCOSghJk27HFAlIaUUpRoFUvSaBZHQJMrllyzXz11fZQoaAZoCWgPQwh2Gf7TjflzQJSGlFKUaBVNGwFoFkdAky1SLqD9O3V9lChoBmgJaA9DCCMShZY1UHBAlIaUUpRoFUvfaBZHQJMuMQTVUdd1fZQoaAZoCWgPQwhVTRB1n4NxQJSGlFKUaBVL6GgWR0CTLmg/keZHdX2UKGgGaAloD0MIeJeL+E5OcECUhpRSlGgVTRkBaBZHQJMu5nzxwyZ1fZQoaAZoCWgPQwi31awzvkFMQJSGlFKUaBVLxGgWR0CTMAlIVdondX2UKGgGaAloD0MIj2yummeZckCUhpRSlGgVS/NoFkdAkzC04BFNL3V9lChoBmgJaA9DCPq0iv7Q0HFAlIaUUpRoFU0kAWgWR0CTMaEuQIUrdX2UKGgGaAloD0MIJ/kRv2K2b0CUhpRSlGgVTRwBaBZHQJMy/4Irvst1fZQoaAZoCWgPQwjLSpNSkD9wQJSGlFKUaBVNDwFoFkdAkzYwSOBDonV9lChoBmgJaA9DCAsm/ihqpHJAlIaUUpRoFUv7aBZHQJM2o6vJRwZ1fZQoaAZoCWgPQwhO8iN+xYFvQJSGlFKUaBVNDQFoFkdAkzddi+cpb3V9lChoBmgJaA9DCL74oj1edm5AlIaUUpRoFUvwaBZHQJM3o8kleGB1fZQoaAZoCWgPQwhTy9b6ohxzQJSGlFKUaBVNdQFoFkdAkzhKJyhi9nV9lChoBmgJaA9DCOVFJuBXqHBAlIaUUpRoFU1hAWgWR0CTOFVYp2ECdX2UKGgGaAloD0MIAoBjz14mcUCUhpRSlGgVS81oFkdAkzh2f9P1tnV9lChoBmgJaA9DCMIyNnQz8XFAlIaUUpRoFUvkaBZHQJM4iAuqWC51fZQoaAZoCWgPQwjLg/QUeahwQJSGlFKUaBVL6WgWR0CTOTdiDujRdX2UKGgGaAloD0MIUTHO34RDbkCUhpRSlGgVTQsBaBZHQJM62OGTLW91fZQoaAZoCWgPQwjJWdjTTuRwQJSGlFKUaBVL0mgWR0CTO89mYjSodX2UKGgGaAloD0MIWg2Je2wccUCUhpRSlGgVTQoBaBZHQJM8LtZ3cHp1fZQoaAZoCWgPQwiPHVTies9wQJSGlFKUaBVL/GgWR0CTPFiRW912dX2UKGgGaAloD0MIeLRxxFo2TECUhpRSlGgVTegDaBZHQJM9HjPv8ZV1fZQoaAZoCWgPQwg+Qs2QqjVxQJSGlFKUaBVNOwFoFkdAkz1PEKmbb3V9lChoBmgJaA9DCK9bBMa64XJAlIaUUpRoFUv3aBZHQJM+4690zTF1fZQoaAZoCWgPQwimJyzxAGpuQJSGlFKUaBVL5mgWR0CTP/tJWeYldX2UKGgGaAloD0MIKy/5n/zdcECUhpRSlGgVTQcBaBZHQJNAL1yvLYB1fZQoaAZoCWgPQwiSzOod7rJxQJSGlFKUaBVNGwFoFkdAk0BiFsYVI3V9lChoBmgJaA9DCOeO/pcrFHJAlIaUUpRoFUvhaBZHQJNAvOVxCIF1fZQoaAZoCWgPQwicpzrk5klxQJSGlFKUaBVL+2gWR0CTQN5MURFrdX2UKGgGaAloD0MImwEuyNZfcECUhpRSlGgVS/1oFkdAk0DdQTEiuHV9lChoBmgJaA9DCPJ9camKkHNAlIaUUpRoFU0EAWgWR0CTQOu+yquKdX2UKGgGaAloD0MIGJP+Xop7bECUhpRSlGgVTSYBaBZHQJNBUpnYg7p1fZQoaAZoCWgPQwi6gm3Ek05vQJSGlFKUaBVL9WgWR0CTQ1PJJXhgdX2UKGgGaAloD0MIgPRNmoZYcECUhpRSlGgVTREBaBZHQJNDXSJCSid1fZQoaAZoCWgPQwhE3QcgtRFxQJSGlFKUaBVLz2gWR0CTQ4qwQlKLdX2UKGgGaAloD0MIrKjBNEw2cECUhpRSlGgVS/RoFkdAk0O4dZJTVHV9lChoBmgJaA9DCNyEe2VeqXBAlIaUUpRoFU0LAWgWR0CTRC5Lh73PdX2UKGgGaAloD0MI95MxPkxecUCUhpRSlGgVTQIBaBZHQJNEtcRlHz91fZQoaAZoCWgPQwieXb71IXJwQJSGlFKUaBVL1mgWR0CTRjgmZ3LWdX2UKGgGaAloD0MI8bp+wS77cUCUhpRSlGgVS/RoFkdAk0cHnhbW3HV9lChoBmgJaA9DCCttcY1P629AlIaUUpRoFUvmaBZHQJNHVUNrj5t1fZQoaAZoCWgPQwhky/J1GXBwQJSGlFKUaBVNJAFoFkdAk0eRi5NGmXV9lChoBmgJaA9DCA+5GW7ADXJAlIaUUpRoFUvuaBZHQJNHt3/xUed1fZQoaAZoCWgPQwgG2h1SjERwQJSGlFKUaBVL8GgWR0CTR8ncL0BfdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16b2440ab1744b43ab0ee0bf2ce833cdc7e84a1f348abf30ff205922d4b2200c
|
3 |
+
size 147344
|
ppo-LunarLander-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
CHANGED
@@ -3,20 +3,21 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,41 +42,41 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
@@ -86,7 +87,7 @@
|
|
86 |
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fa81c515b80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa81c515c10>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa81c515ca0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa81c515d30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fa81c515dc0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fa81c515e50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fa81c515ee0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa81c515f70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fa81c517040>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa81c5170d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa81c517160>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa81c5171f0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fa81c5942d0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1675547832272716781,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOtrz0hyww+C39ZPNt5jb4Lq1Q9Bf4oPAAAAAAAAAAAM0WrPHvykrpy+tA3TRLEMtfGw7ia6fG2AACAPwAAgD8guQU+5/FOPzUI7LwKRuC+7eUAPq61FToAAAAAAAAAANhZiL74u5E/KnAHv8YqHr98CIS+9WBpvQAAAAAAAAAA0CSMPi2aXb1Tf4s7y3Y1uslyv74FmQG7AACAPwAAgD+AfGM9e5yXuvg/ozXtgpgw4gcDO4qdu7QAAIA/AACAPxP1H74QQJk/RGQpvyV5Lb8KCfm967ZcvgAAAAAAAAAAmgZKPtZtrz+CyCQ/8FvfvnUsVD7mNoU+AAAAAAAAAAAzzCI9V451PNawwL20kii+p+4GvahqzTwAAAAAAAAAAM1YgLvt7RU+kIlhvUmMfL5BoTQ7hpG+vAAAAAAAAAAATZ9OPda9sT4/uxQ9csCmvo9/TTsKX8u8AAAAAAAAAABAjic+qbKzP3Za2D7RK/O+L6QbPt4sRz4AAAAAAAAAAAM1jb6TW4k+a9bUPnPopb4WpM+9pr+sPQAAAAAAAAAAmkH1u5QJ3zuJHbA92RqAvq7VTb2Imma9AAAAAAAAAADAEaE9KUh3ur/zKblNobOzPac6uz46RDgAAAAAAAAAAJqmnb3NnYo/roCfvswaCb+l4fC9fe79vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVRRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINIP4wE6NckCUhpRSlIwBbJRL7owBdJRHQJL68XuVopR1fZQoaAZoCWgPQwjEr1jDxXlzQJSGlFKUaBVL+WgWR0CS+vhTwUg0dX2UKGgGaAloD0MIrkoi+6DPcUCUhpRSlGgVS+1oFkdAkvwQyM1jzHV9lChoBmgJaA9DCOD0Lt4PnnFAlIaUUpRoFU0wAWgWR0CS/E48lolEdX2UKGgGaAloD0MIZ3+g3PaWcECUhpRSlGgVTQMBaBZHQJL8wNgBtDV1fZQoaAZoCWgPQwj9hLNby0JyQJSGlFKUaBVL3WgWR0CS/W8GLUCrdX2UKGgGaAloD0MIuRrZlRaIcUCUhpRSlGgVTQMBaBZHQJL9bZsbedl1fZQoaAZoCWgPQwhdF35wvpluQJSGlFKUaBVNGQFoFkdAkv2S/KyOaXV9lChoBmgJaA9DCMcuUb21HW1AlIaUUpRoFUv6aBZHQJL+C7btZ3d1fZQoaAZoCWgPQwj8NsR4jaBwQJSGlFKUaBVL22gWR0CS/19roGILdX2UKGgGaAloD0MIie5Z12gBcUCUhpRSlGgVS/RoFkdAkv/i8jAzpHV9lChoBmgJaA9DCC46WWq9KG5AlIaUUpRoFUvsaBZHQJL/6/j81oB1fZQoaAZoCWgPQwgsvMtFPDtxQJSGlFKUaBVL5GgWR0CTAAemelKsdX2UKGgGaAloD0MIsyRATS09c0CUhpRSlGgVS/5oFkdAkwCj5j6N2nV9lChoBmgJaA9DCDgteNEX6XJAlIaUUpRoFU1CAWgWR0CTAKgx8D0UdX2UKGgGaAloD0MIDp4JTRIUb0CUhpRSlGgVS+VoFkdAkwGDwhGH6HV9lChoBmgJaA9DCGkdVU3QF3FAlIaUUpRoFUvkaBZHQJMCcGHHmzV1fZQoaAZoCWgPQwg/jubIiltyQJSGlFKUaBVL52gWR0CTA0AnlXA/dX2UKGgGaAloD0MIoUrNHijXckCUhpRSlGgVS9JoFkdAkwP79MsYmHV9lChoBmgJaA9DCEMAcOyZl3FAlIaUUpRoFU1CAWgWR0CTBEY/FBIGdX2UKGgGaAloD0MIm3YxzbRZcUCUhpRSlGgVS/xoFkdAkwScTrVvuXV9lChoBmgJaA9DCE3aVN1jwnNAlIaUUpRoFU0jAWgWR0CTBKlA/s3RdX2UKGgGaAloD0MIYabtX1mxbUCUhpRSlGgVS/poFkdAkwSyn1nM+3V9lChoBmgJaA9DCHMrhNXYXHBAlIaUUpRoFU0XAWgWR0CTBVA/9pAVdX2UKGgGaAloD0MIHAjJAibocUCUhpRSlGgVS9RoFkdAkwYGkSElFHV9lChoBmgJaA9DCAcKvJPPMnJAlIaUUpRoFU0HAWgWR0CTBtv0yxiYdX2UKGgGaAloD0MIEXFzKpk3cECUhpRSlGgVS+VoFkdAkwcyVjZtenV9lChoBmgJaA9DCF6iemtgx3BAlIaUUpRoFU0HAWgWR0CTB16XBxgidX2UKGgGaAloD0MIFlETfb7bckCUhpRSlGgVTSoBaBZHQJMIWozeoDR1fZQoaAZoCWgPQwgdWI6QAZpxQJSGlFKUaBVL+WgWR0CTCLTfBN21dX2UKGgGaAloD0MIW5iFdo47cECUhpRSlGgVS+toFkdAkwlNSl3yJHV9lChoBmgJaA9DCLsO1ZTkBG9AlIaUUpRoFUvZaBZHQJMJkc5sCT51fZQoaAZoCWgPQwi+UMB2MKhHQJSGlFKUaBVN6ANoFkdAkwoDjBEa2nV9lChoBmgJaA9DCGGKcmm8jHJAlIaUUpRoFU1XAWgWR0CTCpbiZOSGdX2UKGgGaAloD0MIL/fJUYBwS0CUhpRSlGgVS9NoFkdAkwq3nhbW3HV9lChoBmgJaA9DCAzJycStN25AlIaUUpRoFUvyaBZHQJMLNxEORT11fZQoaAZoCWgPQwgOL4hIjYRyQJSGlFKUaBVL22gWR0CTC5HgxagVdX2UKGgGaAloD0MItW6D2u/OcECUhpRSlGgVS91oFkdAkwxZQLux8nV9lChoBmgJaA9DCCE/G7luV3BAlIaUUpRoFU0cAWgWR0CTDJ7K7qY7dX2UKGgGaAloD0MI547+lystcECUhpRSlGgVS+toFkdAkw2M67ulXXV9lChoBmgJaA9DCF3Aywxb0XNAlIaUUpRoFU1MAWgWR0CTIUrYoRZmdX2UKGgGaAloD0MITfbP04DKcUCUhpRSlGgVTREBaBZHQJMi0JBw++x1fZQoaAZoCWgPQwgLRbqfkw5xQJSGlFKUaBVL7GgWR0CTIvT2FnIydX2UKGgGaAloD0MIA7LXuz/PcECUhpRSlGgVS9poFkdAkySNZJTVD3V9lChoBmgJaA9DCPqXpDLFx25AlIaUUpRoFUv2aBZHQJMk2/h2nsN1fZQoaAZoCWgPQwhzZOWXAdhyQJSGlFKUaBVNOAFoFkdAkyTq55JK8XV9lChoBmgJaA9DCNvdA3QfTXFAlIaUUpRoFUvwaBZHQJMk9kkKNQ11fZQoaAZoCWgPQwgVVb/SecRwQJSGlFKUaBVL52gWR0CTJikhA4XGdX2UKGgGaAloD0MI1zBD40nnc0CUhpRSlGgVTS4BaBZHQJMmXqHGjsV1fZQoaAZoCWgPQwjABdmyfM1xQJSGlFKUaBVL3GgWR0CTJwNBF/hEdX2UKGgGaAloD0MIYkok0YtccECUhpRSlGgVTQ0BaBZHQJMnbhrFfiR1fZQoaAZoCWgPQwiQ3Jp0mz9xQJSGlFKUaBVL/2gWR0CTJ8sMy8BddX2UKGgGaAloD0MIfa62Yj/tcECUhpRSlGgVS/ZoFkdAkykPWDpTuXV9lChoBmgJaA9DCDNPrimQKW1AlIaUUpRoFU0EAWgWR0CTKg3/giu/dX2UKGgGaAloD0MIogxVMZXIb0CUhpRSlGgVS+ZoFkdAkyo44Qz1snV9lChoBmgJaA9DCOSghJk27HFAlIaUUpRoFUvSaBZHQJMrllyzXz11fZQoaAZoCWgPQwh2Gf7TjflzQJSGlFKUaBVNGwFoFkdAky1SLqD9O3V9lChoBmgJaA9DCCMShZY1UHBAlIaUUpRoFUvfaBZHQJMuMQTVUdd1fZQoaAZoCWgPQwhVTRB1n4NxQJSGlFKUaBVL6GgWR0CTLmg/keZHdX2UKGgGaAloD0MIeJeL+E5OcECUhpRSlGgVTRkBaBZHQJMu5nzxwyZ1fZQoaAZoCWgPQwi31awzvkFMQJSGlFKUaBVLxGgWR0CTMAlIVdondX2UKGgGaAloD0MIj2yummeZckCUhpRSlGgVS/NoFkdAkzC04BFNL3V9lChoBmgJaA9DCPq0iv7Q0HFAlIaUUpRoFU0kAWgWR0CTMaEuQIUrdX2UKGgGaAloD0MIJ/kRv2K2b0CUhpRSlGgVTRwBaBZHQJMy/4Irvst1fZQoaAZoCWgPQwjLSpNSkD9wQJSGlFKUaBVNDwFoFkdAkzYwSOBDonV9lChoBmgJaA9DCAsm/ihqpHJAlIaUUpRoFUv7aBZHQJM2o6vJRwZ1fZQoaAZoCWgPQwhO8iN+xYFvQJSGlFKUaBVNDQFoFkdAkzddi+cpb3V9lChoBmgJaA9DCL74oj1edm5AlIaUUpRoFUvwaBZHQJM3o8kleGB1fZQoaAZoCWgPQwhTy9b6ohxzQJSGlFKUaBVNdQFoFkdAkzhKJyhi9nV9lChoBmgJaA9DCOVFJuBXqHBAlIaUUpRoFU1hAWgWR0CTOFVYp2ECdX2UKGgGaAloD0MIAoBjz14mcUCUhpRSlGgVS81oFkdAkzh2f9P1tnV9lChoBmgJaA9DCMIyNnQz8XFAlIaUUpRoFUvkaBZHQJM4iAuqWC51fZQoaAZoCWgPQwjLg/QUeahwQJSGlFKUaBVL6WgWR0CTOTdiDujRdX2UKGgGaAloD0MIUTHO34RDbkCUhpRSlGgVTQsBaBZHQJM62OGTLW91fZQoaAZoCWgPQwjJWdjTTuRwQJSGlFKUaBVL0mgWR0CTO89mYjSodX2UKGgGaAloD0MIWg2Je2wccUCUhpRSlGgVTQoBaBZHQJM8LtZ3cHp1fZQoaAZoCWgPQwiPHVTies9wQJSGlFKUaBVL/GgWR0CTPFiRW912dX2UKGgGaAloD0MIeLRxxFo2TECUhpRSlGgVTegDaBZHQJM9HjPv8ZV1fZQoaAZoCWgPQwg+Qs2QqjVxQJSGlFKUaBVNOwFoFkdAkz1PEKmbb3V9lChoBmgJaA9DCK9bBMa64XJAlIaUUpRoFUv3aBZHQJM+4690zTF1fZQoaAZoCWgPQwimJyzxAGpuQJSGlFKUaBVL5mgWR0CTP/tJWeYldX2UKGgGaAloD0MIKy/5n/zdcECUhpRSlGgVTQcBaBZHQJNAL1yvLYB1fZQoaAZoCWgPQwiSzOod7rJxQJSGlFKUaBVNGwFoFkdAk0BiFsYVI3V9lChoBmgJaA9DCOeO/pcrFHJAlIaUUpRoFUvhaBZHQJNAvOVxCIF1fZQoaAZoCWgPQwicpzrk5klxQJSGlFKUaBVL+2gWR0CTQN5MURFrdX2UKGgGaAloD0MImwEuyNZfcECUhpRSlGgVS/1oFkdAk0DdQTEiuHV9lChoBmgJaA9DCPJ9camKkHNAlIaUUpRoFU0EAWgWR0CTQOu+yquKdX2UKGgGaAloD0MIGJP+Xop7bECUhpRSlGgVTSYBaBZHQJNBUpnYg7p1fZQoaAZoCWgPQwi6gm3Ek05vQJSGlFKUaBVL9WgWR0CTQ1PJJXhgdX2UKGgGaAloD0MIgPRNmoZYcECUhpRSlGgVTREBaBZHQJNDXSJCSid1fZQoaAZoCWgPQwhE3QcgtRFxQJSGlFKUaBVLz2gWR0CTQ4qwQlKLdX2UKGgGaAloD0MIrKjBNEw2cECUhpRSlGgVS/RoFkdAk0O4dZJTVHV9lChoBmgJaA9DCNyEe2VeqXBAlIaUUpRoFU0LAWgWR0CTRC5Lh73PdX2UKGgGaAloD0MI95MxPkxecUCUhpRSlGgVTQIBaBZHQJNEtcRlHz91fZQoaAZoCWgPQwieXb71IXJwQJSGlFKUaBVL1mgWR0CTRjgmZ3LWdX2UKGgGaAloD0MI8bp+wS77cUCUhpRSlGgVS/RoFkdAk0cHnhbW3HV9lChoBmgJaA9DCCttcY1P629AlIaUUpRoFUvmaBZHQJNHVUNrj5t1fZQoaAZoCWgPQwhky/J1GXBwQJSGlFKUaBVNJAFoFkdAk0eRi5NGmXV9lChoBmgJaA9DCA+5GW7ADXJAlIaUUpRoFUvuaBZHQJNHt3/xUed1fZQoaAZoCWgPQwgG2h1SjERwQJSGlFKUaBVL8GgWR0CTR8ncL0BfdWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 248,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
87 |
"n_epochs": 4,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c7b0f0fa949fe1e4f0b9317e368b8f682dbc86b921ab77ae38cfe9827b39590
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:350211199c814a2331a609f745ccf638205e6689f87eb3e4fefdefbec20175a3
|
3 |
+
size 43393
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.10.
|
2 |
-
Python: 3.8.
|
3 |
-
Stable-Baselines3: 1.
|
4 |
-
PyTorch: 1.13.
|
5 |
-
GPU Enabled: True
|
6 |
-
Numpy: 1.21.6
|
7 |
-
Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 257.4628805568601, "std_reward": 23.298910624201465, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-04T22:18:27.951374"}
|