matthh commited on
Commit
25922ab
1 Parent(s): f4e4e97

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -278.88 +/- 168.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x14e4daee0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x14e4daf70>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x14e4dd040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x14e4dd0d0>", "_build": "<function ActorCriticPolicy._build at 0x14e4dd160>", "forward": "<function ActorCriticPolicy.forward at 0x14e4dd1f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x14e4dd280>", "_predict": "<function ActorCriticPolicy._predict at 0x14e4dd310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x14e4dd3a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x14e4dd430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x14e4dd4c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x14e4d5900>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1669319815157624158, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdi9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybF9wbGF5Z3JvdW5kL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHYvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21pbmlmb3JnZS9iYXNlL2VudnMvcmxfcGxheWdyb3VuZC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMC85L3IZZc/+UEgvyWPK78MMUM+o9yIPgAAAAAAAAAALQtpPjVwbD8td90+SWBPv0wPvz3laQI9AAAAAAAAAAAqvL4+ZWa6Pxr8dz8T7XG++iUNv8J6hr4AAAAAAAAAALLoq76h1mM/7t8+vxmNVb/PRMM+yxiFPgAAAAAAAAAAs/cDvftyrT9RtCq/VfUBv1RmGD0AGzQ+AAAAAAAAAACaG328nqe1P3nbSb9tjDw+F2SJPFD3IT4AAAAAAAAAAOZVLL7nWTU/g/XQvkXGhr+nPig+YeckvQAAAAAAAAAAgHQZPrk5jz+xlx0/NHEqv+VlV75E3im+AAAAAAAAAAAD+Ek/2nhgPmw+nz9+Cbq/SvBNv7jkv74AAAAAAAAAACCGO775jn0/CGIrv1vaRb8wsn4+ztZ2PgAAAAAAAAAA1pciP0XMrTz6+eC6MJbNuK1nRD5Iw0W6AACAPwAAgD8zOyI+logTPYhKD76i59G+IhERwOPYs78AAAAAAAAAAMCvvz0lz7s/gEagPpS0Qb4LPa6+sYBDvgAAAAAAAAAAmr6avUt29T5/xoK9SUSJv1CHRL5eCyu+AAAAAAAAAABgsqe+bN8hP/3pTr8iPKO/0U9+Pg5NGj0AAAAAAAAAANbJTT/qyGk/YPzBP2bfdr9+7qW/rtDfvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOxqH+t0VbMCUhpRSlIwBbJRLYIwBdJRHQEE+zqKP4mF1fZQoaAZoCWgPQwjcn4uGjKZfwJSGlFKUaBVLOGgWR0BBQOfEn9ehdX2UKGgGaAloD0MInMO12sOSVMCUhpRSlGgVS0loFkdAQUTExZdOZnV9lChoBmgJaA9DCIwubw7XYHDAlIaUUpRoFUtKaBZHQEFGk+HJtBR1fZQoaAZoCWgPQwivJeSDXstzwJSGlFKUaBVLY2gWR0BBTGYjSofkdX2UKGgGaAloD0MIbhRZa6iKYMCUhpRSlGgVS35oFkdAQVBJEpiI+HV9lChoBmgJaA9DCF0z+Waba1zAlIaUUpRoFUt8aBZHQEFYBcRlHz91fZQoaAZoCWgPQwj9TpMZb3lVwJSGlFKUaBVLRmgWR0BBX/nOjZctdX2UKGgGaAloD0MIqkNuhpv0cMCUhpRSlGgVS15oFkdAQWURFqi48XV9lChoBmgJaA9DCKHWNO8411XAlIaUUpRoFUtLaBZHQEFm8ox59mZ1fZQoaAZoCWgPQwgbLnJPV/ZjwJSGlFKUaBVLVmgWR0BBavd/J/5MdX2UKGgGaAloD0MIo1cDlAYFd8CUhpRSlGgVS2BoFkdAQXDnq3VkMHV9lChoBmgJaA9DCMBZSpYTt3jAlIaUUpRoFUtXaBZHQEFyPp6hQFd1fZQoaAZoCWgPQwjx1Y7inONhwJSGlFKUaBVLSWgWR0BBeI42jwhGdX2UKGgGaAloD0MIpkboZ2rUa8CUhpRSlGgVS3JoFkdAQX3GbTc7AHV9lChoBmgJaA9DCFpmEYotiWnAlIaUUpRoFUtQaBZHQEGDDu0CzTp1fZQoaAZoCWgPQwhQNuUK721YwJSGlFKUaBVLTmgWR0BBg0vwmVqvdX2UKGgGaAloD0MIZ3v0hvssS8CUhpRSlGgVS0RoFkdAQYRBeHBUJnV9lChoBmgJaA9DCJPkub4PC3LAlIaUUpRoFUtXaBZHQEGFGm1pj+d1fZQoaAZoCWgPQwiH4SNiiihzwJSGlFKUaBVLQWgWR0BBiXLFGXoldX2UKGgGaAloD0MIzok9tA+Uc8CUhpRSlGgVS2JoFkdAQYq1eBxxUHV9lChoBmgJaA9DCBE3p5KBMmLAlIaUUpRoFUtRaBZHQEGKK8cuJ1t1fZQoaAZoCWgPQwgrhxbZzmxuwJSGlFKUaBVLZmgWR0BBjE2xY7q6dX2UKGgGaAloD0MIs0RnmUXkXcCUhpRSlGgVSzhoFkdAQZBx//echHV9lChoBmgJaA9DCGwIjss41WXAlIaUUpRoFUtLaBZHQEGhqqwQlKN1fZQoaAZoCWgPQwhkO99PzTd4wJSGlFKUaBVLXWgWR0BBpZRTCLuQdX2UKGgGaAloD0MIzGH3HUMFesCUhpRSlGgVS2doFkdAQbIXO4XoDHV9lChoBmgJaA9DCHEBaJSuNWnAlIaUUpRoFUtCaBZHQEG0lO45Lh91fZQoaAZoCWgPQwi366UpgpZmwJSGlFKUaBVLTWgWR0BBt4UeuFHsdX2UKGgGaAloD0MIUInrGFfEWcCUhpRSlGgVS0RoFkdAQbhEUj9n9XV9lChoBmgJaA9DCKtdE9Ja6XfAlIaUUpRoFUtcaBZHQEG+Si/O+qR1fZQoaAZoCWgPQwjA7QkS245gwJSGlFKUaBVLZ2gWR0BBwGVJL/S6dX2UKGgGaAloD0MI9+l4zID5eMCUhpRSlGgVS1doFkdAQcXUKArhBXV9lChoBmgJaA9DCMakv5fCNmfAlIaUUpRoFUtNaBZHQEHFRfnfVI91fZQoaAZoCWgPQwiQTfIjfvtVwJSGlFKUaBVLS2gWR0BBxyv1UVBVdX2UKGgGaAloD0MIeLMG7yssb8CUhpRSlGgVS1loFkdAQckfV7Qb/HV9lChoBmgJaA9DCGPyBpj5flfAlIaUUpRoFUtLaBZHQEHLqxC6Ymd1fZQoaAZoCWgPQwjT+lsCsD94wJSGlFKUaBVLdWgWR0BByt7KJVKgdX2UKGgGaAloD0MI58jKL4Mwc8CUhpRSlGgVS1doFkdAQc20AtFrmHV9lChoBmgJaA9DCKW762zI9FHAlIaUUpRoFUtIaBZHQEHegaFVT751fZQoaAZoCWgPQwgTRx6ILEV+wJSGlFKUaBVLgmgWR0BB76/yoXKsdX2UKGgGaAloD0MIBoNr7uigbMCUhpRSlGgVS2xoFkdAQfnAXVLBbnV9lChoBmgJaA9DCD7ONGH7wFrAlIaUUpRoFUtbaBZHQEH9xQSBbwB1fZQoaAZoCWgPQwhrDhDMkSt0wJSGlFKUaBVLV2gWR0BB/7O/tY0VdX2UKGgGaAloD0MIa9YZ35dIasCUhpRSlGgVS0loFkdAQgNMuez2OHV9lChoBmgJaA9DCLQ7pBggy2LAlIaUUpRoFUtTaBZHQEIDMtbs4T91fZQoaAZoCWgPQwjcYn5u6DJhwJSGlFKUaBVLTWgWR0BCCxzq8lHCdX2UKGgGaAloD0MIb4Pab221bcCUhpRSlGgVS2toFkdAQg5IBikO7XV9lChoBmgJaA9DCBgLQ+T01SlAlIaUUpRoFUtVaBZHQEITakAPuoh1fZQoaAZoCWgPQwg8vOfAcpZXwJSGlFKUaBVLZ2gWR0BCHiBGx2SudX2UKGgGaAloD0MIGFxzR/8uXMCUhpRSlGgVS19oFkdAQiDnied073V9lChoBmgJaA9DCDf92Y/UWHDAlIaUUpRoFUt8aBZHQEIjXDFZPmB1fZQoaAZoCWgPQwj3WWWmtG1awJSGlFKUaBVLcGgWR0BCJr39JjDsdX2UKGgGaAloD0MIXvI/+btlbcCUhpRSlGgVS3doFkdAQifcnE2pAHV9lChoBmgJaA9DCJtyhXe5KVnAlIaUUpRoFUs+aBZHQEIqdzXBgu11fZQoaAZoCWgPQwhM/id/dzNiwJSGlFKUaBVLdWgWR0BCLcyFfzBidX2UKGgGaAloD0MIOKEQAYd1UcCUhpRSlGgVS0FoFkdAQjsDwH7gsXV9lChoBmgJaA9DCHrjpDDvG1LAlIaUUpRoFUtRaBZHQEJAAH3UQTV1fZQoaAZoCWgPQwhz8iIT8OVUwJSGlFKUaBVLTmgWR0BCR0hNdqtYdX2UKGgGaAloD0MI6SgHs4njYMCUhpRSlGgVS3doFkdAQkdfJFLFoHV9lChoBmgJaA9DCOLl6VxR8knAlIaUUpRoFUtZaBZHQEJNYhdMTOB1fZQoaAZoCWgPQwjJHww89zltwJSGlFKUaBVLSWgWR0BCTbCJoCdSdX2UKGgGaAloD0MIixh2GJMWaMCUhpRSlGgVS0NoFkdAQloi3XqZ+nV9lChoBmgJaA9DCGqme51Ug3LAlIaUUpRoFUtUaBZHQEJbZK3/gix1fZQoaAZoCWgPQwgtsMdESmxpwJSGlFKUaBVLbGgWR0BCW3pwCKaYdX2UKGgGaAloD0MIt+7mqQ4eV8CUhpRSlGgVSzxoFkdAQl8hib2DhHV9lChoBmgJaA9DCL4ViQnqdWfAlIaUUpRoFUtEaBZHQEJfKFqSHM51fZQoaAZoCWgPQwi2ErpL4l9QwJSGlFKUaBVLb2gWR0BCajxTbWVedX2UKGgGaAloD0MIMv/omzR0V8CUhpRSlGgVS1RoFkdAQmtg4Otnw3V9lChoBmgJaA9DCGEyVTAqpV7AlIaUUpRoFUtgaBZHQEJubXpW3jN1fZQoaAZoCWgPQwjCTUaVYWBZwJSGlFKUaBVLYWgWR0BCcEh7mdRSdX2UKGgGaAloD0MIdk8eFmryaMCUhpRSlGgVSz9oFkdAQnm6K+BYm3V9lChoBmgJaA9DCIfCZ+vgKXLAlIaUUpRoFUtTaBZHQEJ/LB9Cu2Z1fZQoaAZoCWgPQwgllL4Qch49wJSGlFKUaBVLbWgWR0BCgZA6dUbUdX2UKGgGaAloD0MIAW2rWecZYsCUhpRSlGgVS1poFkdAQokolUp/gHV9lChoBmgJaA9DCNleC3pvfFzAlIaUUpRoFUtGaBZHQEKSEcKgIyF1fZQoaAZoCWgPQwiiz0cZcQ1ewJSGlFKUaBVLaGgWR0BCoyxJNCZ4dX2UKGgGaAloD0MItvKS/0lubcCUhpRSlGgVS1JoFkdAQqLuSfUWmHV9lChoBmgJaA9DCJZfBmNEzFvAlIaUUpRoFUtEaBZHQEKioCuEEkl1fZQoaAZoCWgPQwjWq8jogIwuQJSGlFKUaBVLVmgWR0BCpvTodMkAdX2UKGgGaAloD0MIP+PCgZA8TsCUhpRSlGgVS0BoFkdAQqbLlmvnsHV9lChoBmgJaA9DCLaizXFudVTAlIaUUpRoFUtgaBZHQEKq/Zdv8651fZQoaAZoCWgPQwh0KENVzINgwJSGlFKUaBVLUmgWR0BCtFJpWV/udX2UKGgGaAloD0MIKCzxgLLEZcCUhpRSlGgVS1VoFkdAQrQMSbpeNXV9lChoBmgJaA9DCHdqLjcYDGHAlIaUUpRoFUtQaBZHQELCH2ys0YV1fZQoaAZoCWgPQwgjLZW3I/5VwJSGlFKUaBVLjGgWR0BCxazE74i5dX2UKGgGaAloD0MI8wGBzqReecCUhpRSlGgVS3toFkdAQsVgv114gXV9lChoBmgJaA9DCKDgYkWNu2rAlIaUUpRoFUtYaBZHQELQK5TZQHl1fZQoaAZoCWgPQwi8lpAPOtN1wJSGlFKUaBVLYGgWR0BC1IeYD1XedX2UKGgGaAloD0MIhJuMKsMAScCUhpRSlGgVS01oFkdAQtibONYKY3V9lChoBmgJaA9DCHCaPjvgwlfAlIaUUpRoFUtGaBZHQELhbrTpgTh1fZQoaAZoCWgPQwhLWvENhTJlwJSGlFKUaBVLYmgWR0BC4WGRFI/adX2UKGgGaAloD0MIPnsuU9OzdsCUhpRSlGgVS0toFkdAQuVLi++M63V9lChoBmgJaA9DCEKwql5+rWHAlIaUUpRoFUtQaBZHQELovxpcoph1fZQoaAZoCWgPQwin64muC4tVwJSGlFKUaBVLTWgWR0BC6bsniNsFdX2UKGgGaAloD0MIvmvQl95kVcCUhpRSlGgVS0hoFkdAQvCDdxhlUnV9lChoBmgJaA9DCKPNcW4TyVfAlIaUUpRoFUtaaBZHQEL0POIInjR1fZQoaAZoCWgPQwiOeLKbGapUwJSGlFKUaBVLVGgWR0BC+/ZElVtGdX2UKGgGaAloD0MIa/KU1XQ5U8CUhpRSlGgVS0JoFkdAQwksJ6Y3N3V9lChoBmgJaA9DCPGD86njsXrAlIaUUpRoFUtvaBZHQEML6dDpkf91ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000", "Python": "3.9.13", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0", "GPU Enabled": "False", "Numpy": "1.23.5", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:63f36be154c6c1357205f19f007c3304fb2f385ff3d332c19dd5c4479ea64210
3
+ size 146701
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x14e4daee0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x14e4daf70>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x14e4dd040>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x14e4dd0d0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x14e4dd160>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x14e4dd1f0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x14e4dd280>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x14e4dd310>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x14e4dd3a0>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x14e4dd430>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x14e4dd4c0>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc._abc_data object at 0x14e4d5900>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 16384,
46
+ "_total_timesteps": 1000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1669319815157624158,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMdi9vcHQvaG9tZWJyZXcvQ2Fza3Jvb20vbWluaWZvcmdlL2Jhc2UvZW52cy9ybF9wbGF5Z3JvdW5kL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHYvb3B0L2hvbWVicmV3L0Nhc2tyb29tL21pbmlmb3JnZS9iYXNlL2VudnMvcmxfcGxheWdyb3VuZC9saWIvcHl0aG9uMy45L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMC85L3IZZc/+UEgvyWPK78MMUM+o9yIPgAAAAAAAAAALQtpPjVwbD8td90+SWBPv0wPvz3laQI9AAAAAAAAAAAqvL4+ZWa6Pxr8dz8T7XG++iUNv8J6hr4AAAAAAAAAALLoq76h1mM/7t8+vxmNVb/PRMM+yxiFPgAAAAAAAAAAs/cDvftyrT9RtCq/VfUBv1RmGD0AGzQ+AAAAAAAAAACaG328nqe1P3nbSb9tjDw+F2SJPFD3IT4AAAAAAAAAAOZVLL7nWTU/g/XQvkXGhr+nPig+YeckvQAAAAAAAAAAgHQZPrk5jz+xlx0/NHEqv+VlV75E3im+AAAAAAAAAAAD+Ek/2nhgPmw+nz9+Cbq/SvBNv7jkv74AAAAAAAAAACCGO775jn0/CGIrv1vaRb8wsn4+ztZ2PgAAAAAAAAAA1pciP0XMrTz6+eC6MJbNuK1nRD5Iw0W6AACAPwAAgD8zOyI+logTPYhKD76i59G+IhERwOPYs78AAAAAAAAAAMCvvz0lz7s/gEagPpS0Qb4LPa6+sYBDvgAAAAAAAAAAmr6avUt29T5/xoK9SUSJv1CHRL5eCyu+AAAAAAAAAABgsqe+bN8hP/3pTr8iPKO/0U9+Pg5NGj0AAAAAAAAAANbJTT/qyGk/YPzBP2bfdr9+7qW/rtDfvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -15.384,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOxqH+t0VbMCUhpRSlIwBbJRLYIwBdJRHQEE+zqKP4mF1fZQoaAZoCWgPQwjcn4uGjKZfwJSGlFKUaBVLOGgWR0BBQOfEn9ehdX2UKGgGaAloD0MInMO12sOSVMCUhpRSlGgVS0loFkdAQUTExZdOZnV9lChoBmgJaA9DCIwubw7XYHDAlIaUUpRoFUtKaBZHQEFGk+HJtBR1fZQoaAZoCWgPQwivJeSDXstzwJSGlFKUaBVLY2gWR0BBTGYjSofkdX2UKGgGaAloD0MIbhRZa6iKYMCUhpRSlGgVS35oFkdAQVBJEpiI+HV9lChoBmgJaA9DCF0z+Waba1zAlIaUUpRoFUt8aBZHQEFYBcRlHz91fZQoaAZoCWgPQwj9TpMZb3lVwJSGlFKUaBVLRmgWR0BBX/nOjZctdX2UKGgGaAloD0MIqkNuhpv0cMCUhpRSlGgVS15oFkdAQWURFqi48XV9lChoBmgJaA9DCKHWNO8411XAlIaUUpRoFUtLaBZHQEFm8ox59mZ1fZQoaAZoCWgPQwgbLnJPV/ZjwJSGlFKUaBVLVmgWR0BBavd/J/5MdX2UKGgGaAloD0MIo1cDlAYFd8CUhpRSlGgVS2BoFkdAQXDnq3VkMHV9lChoBmgJaA9DCMBZSpYTt3jAlIaUUpRoFUtXaBZHQEFyPp6hQFd1fZQoaAZoCWgPQwjx1Y7inONhwJSGlFKUaBVLSWgWR0BBeI42jwhGdX2UKGgGaAloD0MIpkboZ2rUa8CUhpRSlGgVS3JoFkdAQX3GbTc7AHV9lChoBmgJaA9DCFpmEYotiWnAlIaUUpRoFUtQaBZHQEGDDu0CzTp1fZQoaAZoCWgPQwhQNuUK721YwJSGlFKUaBVLTmgWR0BBg0vwmVqvdX2UKGgGaAloD0MIZ3v0hvssS8CUhpRSlGgVS0RoFkdAQYRBeHBUJnV9lChoBmgJaA9DCJPkub4PC3LAlIaUUpRoFUtXaBZHQEGFGm1pj+d1fZQoaAZoCWgPQwiH4SNiiihzwJSGlFKUaBVLQWgWR0BBiXLFGXoldX2UKGgGaAloD0MIzok9tA+Uc8CUhpRSlGgVS2JoFkdAQYq1eBxxUHV9lChoBmgJaA9DCBE3p5KBMmLAlIaUUpRoFUtRaBZHQEGKK8cuJ1t1fZQoaAZoCWgPQwgrhxbZzmxuwJSGlFKUaBVLZmgWR0BBjE2xY7q6dX2UKGgGaAloD0MIs0RnmUXkXcCUhpRSlGgVSzhoFkdAQZBx//echHV9lChoBmgJaA9DCGwIjss41WXAlIaUUpRoFUtLaBZHQEGhqqwQlKN1fZQoaAZoCWgPQwhkO99PzTd4wJSGlFKUaBVLXWgWR0BBpZRTCLuQdX2UKGgGaAloD0MIzGH3HUMFesCUhpRSlGgVS2doFkdAQbIXO4XoDHV9lChoBmgJaA9DCHEBaJSuNWnAlIaUUpRoFUtCaBZHQEG0lO45Lh91fZQoaAZoCWgPQwi366UpgpZmwJSGlFKUaBVLTWgWR0BBt4UeuFHsdX2UKGgGaAloD0MIUInrGFfEWcCUhpRSlGgVS0RoFkdAQbhEUj9n9XV9lChoBmgJaA9DCKtdE9Ja6XfAlIaUUpRoFUtcaBZHQEG+Si/O+qR1fZQoaAZoCWgPQwjA7QkS245gwJSGlFKUaBVLZ2gWR0BBwGVJL/S6dX2UKGgGaAloD0MI9+l4zID5eMCUhpRSlGgVS1doFkdAQcXUKArhBXV9lChoBmgJaA9DCMakv5fCNmfAlIaUUpRoFUtNaBZHQEHFRfnfVI91fZQoaAZoCWgPQwiQTfIjfvtVwJSGlFKUaBVLS2gWR0BBxyv1UVBVdX2UKGgGaAloD0MIeLMG7yssb8CUhpRSlGgVS1loFkdAQckfV7Qb/HV9lChoBmgJaA9DCGPyBpj5flfAlIaUUpRoFUtLaBZHQEHLqxC6Ymd1fZQoaAZoCWgPQwjT+lsCsD94wJSGlFKUaBVLdWgWR0BByt7KJVKgdX2UKGgGaAloD0MI58jKL4Mwc8CUhpRSlGgVS1doFkdAQc20AtFrmHV9lChoBmgJaA9DCKW762zI9FHAlIaUUpRoFUtIaBZHQEHegaFVT751fZQoaAZoCWgPQwgTRx6ILEV+wJSGlFKUaBVLgmgWR0BB76/yoXKsdX2UKGgGaAloD0MIBoNr7uigbMCUhpRSlGgVS2xoFkdAQfnAXVLBbnV9lChoBmgJaA9DCD7ONGH7wFrAlIaUUpRoFUtbaBZHQEH9xQSBbwB1fZQoaAZoCWgPQwhrDhDMkSt0wJSGlFKUaBVLV2gWR0BB/7O/tY0VdX2UKGgGaAloD0MIa9YZ35dIasCUhpRSlGgVS0loFkdAQgNMuez2OHV9lChoBmgJaA9DCLQ7pBggy2LAlIaUUpRoFUtTaBZHQEIDMtbs4T91fZQoaAZoCWgPQwjcYn5u6DJhwJSGlFKUaBVLTWgWR0BCCxzq8lHCdX2UKGgGaAloD0MIb4Pab221bcCUhpRSlGgVS2toFkdAQg5IBikO7XV9lChoBmgJaA9DCBgLQ+T01SlAlIaUUpRoFUtVaBZHQEITakAPuoh1fZQoaAZoCWgPQwg8vOfAcpZXwJSGlFKUaBVLZ2gWR0BCHiBGx2SudX2UKGgGaAloD0MIGFxzR/8uXMCUhpRSlGgVS19oFkdAQiDnied073V9lChoBmgJaA9DCDf92Y/UWHDAlIaUUpRoFUt8aBZHQEIjXDFZPmB1fZQoaAZoCWgPQwj3WWWmtG1awJSGlFKUaBVLcGgWR0BCJr39JjDsdX2UKGgGaAloD0MIXvI/+btlbcCUhpRSlGgVS3doFkdAQifcnE2pAHV9lChoBmgJaA9DCJtyhXe5KVnAlIaUUpRoFUs+aBZHQEIqdzXBgu11fZQoaAZoCWgPQwhM/id/dzNiwJSGlFKUaBVLdWgWR0BCLcyFfzBidX2UKGgGaAloD0MIOKEQAYd1UcCUhpRSlGgVS0FoFkdAQjsDwH7gsXV9lChoBmgJaA9DCHrjpDDvG1LAlIaUUpRoFUtRaBZHQEJAAH3UQTV1fZQoaAZoCWgPQwhz8iIT8OVUwJSGlFKUaBVLTmgWR0BCR0hNdqtYdX2UKGgGaAloD0MI6SgHs4njYMCUhpRSlGgVS3doFkdAQkdfJFLFoHV9lChoBmgJaA9DCOLl6VxR8knAlIaUUpRoFUtZaBZHQEJNYhdMTOB1fZQoaAZoCWgPQwjJHww89zltwJSGlFKUaBVLSWgWR0BCTbCJoCdSdX2UKGgGaAloD0MIixh2GJMWaMCUhpRSlGgVS0NoFkdAQloi3XqZ+nV9lChoBmgJaA9DCGqme51Ug3LAlIaUUpRoFUtUaBZHQEJbZK3/gix1fZQoaAZoCWgPQwgtsMdESmxpwJSGlFKUaBVLbGgWR0BCW3pwCKaYdX2UKGgGaAloD0MIt+7mqQ4eV8CUhpRSlGgVSzxoFkdAQl8hib2DhHV9lChoBmgJaA9DCL4ViQnqdWfAlIaUUpRoFUtEaBZHQEJfKFqSHM51fZQoaAZoCWgPQwi2ErpL4l9QwJSGlFKUaBVLb2gWR0BCajxTbWVedX2UKGgGaAloD0MIMv/omzR0V8CUhpRSlGgVS1RoFkdAQmtg4Otnw3V9lChoBmgJaA9DCGEyVTAqpV7AlIaUUpRoFUtgaBZHQEJubXpW3jN1fZQoaAZoCWgPQwjCTUaVYWBZwJSGlFKUaBVLYWgWR0BCcEh7mdRSdX2UKGgGaAloD0MIdk8eFmryaMCUhpRSlGgVSz9oFkdAQnm6K+BYm3V9lChoBmgJaA9DCIfCZ+vgKXLAlIaUUpRoFUtTaBZHQEJ/LB9Cu2Z1fZQoaAZoCWgPQwgllL4Qch49wJSGlFKUaBVLbWgWR0BCgZA6dUbUdX2UKGgGaAloD0MIAW2rWecZYsCUhpRSlGgVS1poFkdAQokolUp/gHV9lChoBmgJaA9DCNleC3pvfFzAlIaUUpRoFUtGaBZHQEKSEcKgIyF1fZQoaAZoCWgPQwiiz0cZcQ1ewJSGlFKUaBVLaGgWR0BCoyxJNCZ4dX2UKGgGaAloD0MItvKS/0lubcCUhpRSlGgVS1JoFkdAQqLuSfUWmHV9lChoBmgJaA9DCJZfBmNEzFvAlIaUUpRoFUtEaBZHQEKioCuEEkl1fZQoaAZoCWgPQwjWq8jogIwuQJSGlFKUaBVLVmgWR0BCpvTodMkAdX2UKGgGaAloD0MIP+PCgZA8TsCUhpRSlGgVS0BoFkdAQqbLlmvnsHV9lChoBmgJaA9DCLaizXFudVTAlIaUUpRoFUtgaBZHQEKq/Zdv8651fZQoaAZoCWgPQwh0KENVzINgwJSGlFKUaBVLUmgWR0BCtFJpWV/udX2UKGgGaAloD0MIKCzxgLLEZcCUhpRSlGgVS1VoFkdAQrQMSbpeNXV9lChoBmgJaA9DCHdqLjcYDGHAlIaUUpRoFUtQaBZHQELCH2ys0YV1fZQoaAZoCWgPQwgjLZW3I/5VwJSGlFKUaBVLjGgWR0BCxazE74i5dX2UKGgGaAloD0MI8wGBzqReecCUhpRSlGgVS3toFkdAQsVgv114gXV9lChoBmgJaA9DCKDgYkWNu2rAlIaUUpRoFUtYaBZHQELQK5TZQHl1fZQoaAZoCWgPQwi8lpAPOtN1wJSGlFKUaBVLYGgWR0BC1IeYD1XedX2UKGgGaAloD0MIhJuMKsMAScCUhpRSlGgVS01oFkdAQtibONYKY3V9lChoBmgJaA9DCHCaPjvgwlfAlIaUUpRoFUtGaBZHQELhbrTpgTh1fZQoaAZoCWgPQwhLWvENhTJlwJSGlFKUaBVLYmgWR0BC4WGRFI/adX2UKGgGaAloD0MIPnsuU9OzdsCUhpRSlGgVS0toFkdAQuVLi++M63V9lChoBmgJaA9DCEKwql5+rWHAlIaUUpRoFUtQaBZHQELovxpcoph1fZQoaAZoCWgPQwin64muC4tVwJSGlFKUaBVLTWgWR0BC6bsniNsFdX2UKGgGaAloD0MIvmvQl95kVcCUhpRSlGgVS0hoFkdAQvCDdxhlUnV9lChoBmgJaA9DCKPNcW4TyVfAlIaUUpRoFUtaaBZHQEL0POIInjR1fZQoaAZoCWgPQwiOeLKbGapUwJSGlFKUaBVLVGgWR0BC+/ZElVtGdX2UKGgGaAloD0MIa/KU1XQ5U8CUhpRSlGgVS0JoFkdAQwksJ6Y3N3V9lChoBmgJaA9DCPGD86njsXrAlIaUUpRoFUtvaBZHQEML6dDpkf91ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 4,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:598cf556709fba24a4e15e7c20f7b054c8e0e50cc0ce567b10208e7d862b79d9
3
+ size 87545
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:289c3062619a89e3ef58f04f4f8c217be18a24d168b6bbf9c304d8bb5a7510ea
3
+ size 43073
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: macOS-12.6-arm64-arm-64bit Darwin Kernel Version 21.6.0: Mon Aug 22 20:19:52 PDT 2022; root:xnu-8020.140.49~2/RELEASE_ARM64_T6000
2
+ Python: 3.9.13
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0
5
+ GPU Enabled: False
6
+ Numpy: 1.23.5
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (470 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -278.8796633115038, "std_reward": 168.75681959452294, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-11-24T21:11:13.002310"}